Обобщенный метод наименьших квадратов (ОМНК)
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS – Ordinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Остановимся на использовании ОМНК для корректировки гетероскедастичности.

Как и раньше, будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т.е.

    ,

где  – дисперсия ошибки при конкретном -м значении фактора;  – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков;  – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что  неизвестна, а в отношении величин  выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения    при  модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе -го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии  по  мы перейдем к регрессии на новых переменных:  и . Уравнение регрессии примет вид:

    ,

а исходные данные для данного уравнения будут иметь вид:

    ,              .

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные  и  взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

    .

Соответственно получим следующую систему нормальных уравнений:

   

Если преобразованные переменные  и  взять в отклонениях от средних уровней, то коэффициент регрессии  можно определить как

    .

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии  определяется по формуле:

    .

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии  представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,

для которой дисперсия остаточных величин оказалась пропорциональна .  представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих  значений факторов  и . Ввиду того, что

,

рассматриваемая модель примет вид

,

где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки  гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности . Уравнение с преобразованными переменными составит

    .

Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

    .

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности . В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки  пропорциональны значениям фактора. Так, если в уравнении

   

предположить, что , т.е.  и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных  имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример . Пусть  – издержки производства,  – объем продукции,  – основные производственные фонды,  – численность работников, тогда уравнение

   

является моделью издержек производства с объемными факторами. Предполагая, что  пропорциональна квадрату численности работников , мы получим в качестве результативного признака затраты на одного работника , а в качестве факторов следующие показатели: производительность труда  и фондовооруженность труда . Соответственно трансформированная модель примет вид

    ,

где параметры , ,  численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фовдовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.

В нем новые переменные:  – затраты на единицу (или на 1 руб. продукции),  – фондоемкость продукции,  – трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное основание: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза  трансформирует линейное уравнение

   

в уравнение

    ,

в котором параметры  и  поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.

Пример . Рассматривая зависимость сбережений  от дохода , по первоначальным данным было получено уравнение регрессии

.

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

    .

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра  зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Процесс перехода к относительным величинам может быть осложнен выдвижением иных гипотез о пропорциональности ошибок относительно включенных в модель факторов. Использование той или иной гипотезы предполагает специальные исследования остаточных величин для соответствующих регрессионных моделей. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

Дата: 2018-11-18, просмотров: 559.