Ядерная энергетика, широко используемая в последние десятилетия, оставляет много радиоактивных отходов: в основном, это отработанное ядерное топливо реакторов АЭС и подводных лодок, а также надводных кораблей Военно-морского флота. Эти отходы накапливаются и представляют чрезвычайную радиационную опасность для обширных районов России и сопредельных стран. Что делать с этими отходами?
Несколько отечественных физико-технических институтов разработали проект их захоронения, в основу которого положен подземный ядерный взрыв. Предлагается осуществить его на острове Новая Земля, в зоне вечной мерзлоты, на глубине 600 м. Там, на бывшем атомном полигоне, имеются заброшенные" выработанные шахты и штольни; их-то и можно специально подготовить и разместить в них отработанные твэлы с АЭС, реакторы лодок, отходы ядерных предприятий, загрязненные конструкции. Пространство между опасным «мусором» планируется заполнить материалом, способным резко снизить излучение. После ядерного взрыва в штольне должно образоваться стеклообразное вещество, которое явится хорошим барьером для ядерных излучений. В результате одного такого взрыва может быть превращено в стекловидную массу до 100 т радиоактивных отходов.
Вопросы и задания
1.Знали ли вы, что в нашей стране накопилось много радиоактивного «мусора» и что он теперь — реальная и грозная опасность для нашей жизни и здоровья? Откуда берется этот «мусор»?
2.Какие могут быть экологические последствия, если эту проблему не решить?
3.Как вы думаете: какой метод захоронения отходов дороже — метод стеклования взрывом или традиционный, требующий сооружения бетонных могильников? Почему? (Ответ. Традиционный метод дороже: для его осуществления требуется возвести помимо могильников комплекс обслуживающих предприятий и поддерживать постоянные параметры захоронений — давление, температуру, влажность.)
4.Можно ли, с вашей точки зрения, «совместить» предлагаемый проект захоронения отходов с помощью подземных ядерных взрывов и Договор о всеобщем запрещении ядерных испытаний, который подписан Россией и за бессрочное продление которого выступает наша страна?
Текст по разделу «Молекулярная физика», содержащий описание опыта. Задания на определение (или формулировку) гипотезы опыта, условий его проведения и выводов
Наблюдаем анизотропию на примере бумаги
Хорошим пособием для наблюдения анизотропии свойств материалов является обычная бумага. Бумага — это связанные между собой древесные волокна длиной 2-4 мм и толщиной 30-50 мкм, которые имеют кристаллические и аморфные участки. Свойства волокон вдоль их осей и в перпендикулярном к ним направлении различны. При производстве бумаги оси волокна располагаются в плоскости листа, но не абсолютно хаотично. В результате механического взаимодействия с катками бумагоделательной машины они преимущественно ориентируются в направлении движения бумажного волокна. Поэтому появляется анизотропия свойств в так называемом машинном и поперечном к нему направлениях. Наибольшую анизотропию имеет бумага, изготовляемая на высокоскоростных машинах, например, газетная.
Самое простое — это наблюдение анизотропии механических свойств. Берем газету и рвем ее в двух взаимно перпендикулярных направлениях. В одном направлении линия разрыва ровная, а в другом — рваная, потому что механическая прочность разная.
Для наблюдения анизотропии при изгибе вырезаем две одинаковые полоски длиной около 15 см и шириной около 2 см в машинном и поперечном направлениях. Складываем их вместе и, держа полоски за один конец, наблюдаем, что изгиб полосок разный.
Для бумаги характерна анизотропия всех физико-механических свойств.
Вопросы и задания
1.В чем заключается анизотропность вещества? Анизотропию каких свойств бумаги можно наблюдать, проделав данный опыт?
2.Машинное направление будет вдоль или поперек ровной линии разрыва?
3.Какая полоска больше изогнется: вырезанная в поперечном или в машинном направлении? Как вы думаете, как связана анизотропия бумаги с процессом ее изготовления?
4.Какие тела обладают изотропией? Приведите примеры анизотропных и изотропных тел.
Текст по разделу «Электродинамика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задания на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи имеющихся знаний
Молния
Атмосферное электричество образуется и концентрируется в облаках — образованиях из мелких водяных частиц, находящихся в жидком и твердом состояниях.
Сухой снег представляет собой типичное сыпучее тело: при трении снежинок друг о друга, их ударах о землю и о местные предметы снег должен электризоваться. При низких температурах во время сильных снегопадов и метелей электризация снега настолько велика, что происходят зимние грозы, наблюдается свечение остроконечных предметов, образуются шаровые молнии.
При дроблении водяных капель и кристаллов льда, при столкновениях их с ионами атмосферного воздуха крупные капли и кристаллы приобретают избыточный отрицательный заряд, а мелкие — положительный. Восходящие потоки воздуха в грозовом облаке поднимают мелкие капли и кристаллы к вершине облака, крупные капли и кристаллы падают к его основанию. Отрицательно заряженная часть облака наводит на земной поверхности под собой положительный заряд. Между облаком и землей создается сильное электрическое поле, которое способствует ионизации воздуха и возникновению искрового разряда. Молния переносит из облака 20—30 Кл отрицательного заряда, сила тока 10—20 кА, длительность импульса тока несколько десятков микросекунд. Разряд прекращается, так как большая часть избыточных электрических разрядов нейтрализуется электрическим током, протекающим по плазменному каналу молнии.
Вопросы и задания
1.Можно ли назвать молнию, возникающую между облаком и землей, электрическим током? А между двумя облаками?
2.Каковы причины возникновения молнии?
3.Каким зарядом в большинстве случаев заряжается нижняя часть облака, а каким — верхняя? С чем это связано?
4.Какое действие электрического тока вызывает образование озона в воздухе при грозовых разрядах?
Текст по разделу «Механика», содержащий описание использования законов механики в технике.
Задания на понимание основных принципов, лежащих в основе описанного устройства
Гидравлический удар на службе человека
Явление гидравлического удара, заключающегося в резком увеличении давления при внезапном падении скорости потока жидкости, нашло свое воплощение в устройствах, называемыми гидравлическими таранами.
Это, в сущности, насос без двигателя, который, не требуя подключения дополнительного источника энергии, использует только потенциал небольшой плотины или даже просто естественного рельефа реки. Гидротаран способен нагнетать жидкость на высоту в 10—20 раз большую, чем высота используемой плотины. Вода от источника самотеком подается по длинному напорному трубопроводу, идущему с небольшим понижением. Под действием нарастающего динамического напора воды закрывается отбойный клапан, расположенный на нижнем конце трубопровода, и вследствие инерции движущейся воды и её несжимаемости давление здесь резко повышается. Кратковременного повышения давления достаточно для подъема небольшой части воды через напорный клапан на высоту более 50 м. Затем отбойный клапан открывается, и все повторяется сначала.
Гидравлический таран действует только за счет импульса движущегося столба воды, без какого-либо двигателя. Применяется для полива сельхозкультур, для водоснабжения небольших строек, для подачи воды на пастбища, расположенные в 10-20 км от реки и т.д.
Вопросы и задания
1.Что представляет собой явление гидравлического удара? Каковы условия его возникновения?
2.Назовите причину возникновения повышения давления в нижнем конце трубопровода гидравлического тарана.
3.Гидротаран использовали еще в начале XX века, однако потом он был не заслуженно забыт. С какими проблемами связан наряду с использованием новейших технологий возврат к старым изобретениям человечества?
4.Чем обусловлена необходимость установления в трубах теплосетей специальных устройств — стабилизаторов давления?
Текст по разделу «Электродинамика», содержащий описание опыта. Задания на определение (или формулировку) гипотезы опыта, условий его проведения и выводов
Из истории открытия электромагнитных явлений
Очень внимательно слушает на заседании Французской академии наук выступление её ученого секретаря Франсуа Араго об опытах Эрстеда выдающийся математик Андре Мари Ампер. У него рождается проницательная мысль: если проводник тока всегда окружен магнитными силами, то «электрический конфликт» должен выступать не только между проводом и магнитной стрелкой, но и между двумя проводами, по которым течет ток. За семь дней Ампер конструирует оригинальный электрический прибор и уже на следующем заседании демонстрирует присутствующим взаимодействие двух проводников с током! Если в обоих проводниках электрические токи текут параллельно друг другу в одном направлении, то они притягиваются, эти же проводники отталкиваются, когда токи в них проходят во взаимно противоположных направлениях. Ампер продолжает свои опыты. Свернув проводники в виде двух спиралей, получивших название «соленоиды», он доказывает, что соленоиды, установленные рядом, при пропускании через них тока ведут себя, подобно двум магнитам.
Идеи Ампера были столь новы, что многие члены Французской академии не поняли их революционного научного смысла. «Что же, собственно, нового в том, что вы нам сообщили? — спросил один из них. — Само собой ясно, что если два тока оказывают действие на магнитную стрелку, то они оказывают действие и друг на друга?» За Ампера его оппоненту мгновенно ответил Араго. Он вынул из кармана два ключа и сказал: «Вот каждый из них тоже оказывает действие на магнитную стрелку, однако же они никак не действуют друг на друга...»
Вопросы и задания
1.Какую гипотезу пытался проверить Ампер своими опытами? Что надо пони мать под словами «электрический конфликт»?
2.Играет ли роль в проверке взаимодействия между проводниками с током расстояние между ними?
3.В каком направлении должны протекать токи в двух соленоидах, чтобы они притягивались друг к другу?
4.Как вы думаете, каким образом можно исследовать влияние магнитного поля Земли на движение проводника, соленоида или металлической рамки с током?
Текст по разделу «Механика», содержащий информацию о мерах безопасности при использовании транспортных средств или шумовом загрязнении окружающей среды.
Задания на понимание основных принципов, обеспечивающих безопасность использования механических устройств, или выявление мер по снижению шумового воздействия на человека
Спасите наши уши!
Слух всегда бодрствует, даже ночью, во сне. Он постоянно подвергается раздражению, так как не обладает никакими защитными приспособлениями.
Обычно для обозначения того, что мы слышим, используются два близких по смыслу слова: «звук» и «шум». Звук — это физическое явление, вызванное колебательным движением частиц среды. Шум представляет собой хаотичное, нестройное смешение звуков, отрицательно действующее на нервную систему. Воздействие шума на человека определяется его уровнем (громкостью, интенсивностью) и высотой составляющих его звуков, а также продолжительностью воздействия. Уровни шумов от различных источников и реакция организма на акустические воздействия приведены в таблице.
Источник шума, помещение | Уровень шума, дБ | Реакция организма на длительное акустическое воздействие |
Листва, прибой Средний шум в квартире, классе | 20 40 | Успокаивает Гигиеническая норма |
Шум внутри здания рядом с магистралью Телевизор Поезд метро Кричащий человек Мотоцикл | 60 70 80 80 90 | Появляются чувство раздражения, утомляемость, головная боль |
Реактивный самолет (на высоте 300 м) Цех текстильной фабрики | 95 100 | Постепенное ослабление слуха, нервно-психический стресс (угнетённость, возбуждённость, агрессивность), язвенная болезнь, гипертония |
Плеер Ткацкий станок Отбойный молоток Реактивный двигатель (при взлете, на расстоянии 25 м) Шум на дискотеке | 114 120 120 140-150 175 | Вызывает звуковое опьянение наподобие алкогольного, нарушает сон, разрушает психику, приводит к глухоте |
В диапазоне слышимых человеком звуков самое неблагоприятное воздействие оказывает шум, в спектре которого преобладают высокие частоты (выше 800 Гц). Звуки сверхнизких частот, которые мы даже и не слышим (инфразвуки), также опасны для организма человека. Частота в 6 Гц может вызвать ощущение усталости, тоски, морскую болезнь, при частоте в 7 Гц может даже наступить смерть от внезапной остановки сердца. Доказано, что, попадая в естественный резонанс работы какого-нибудь органа, инфразвуки могут разрушить его, например, частота в 5 Гц разрушает печень.
Вопросы и задания
1.Что собой представляет звуковая волна? Каков частотный диапазон, воспринимаемый человеком? Соответствует ли шуму какая-либо определенная частота?
2.Сравните громкость звука плеера с техническими устройствами, указанными в таблице. Почему (по выводам скандинавских учёных) каждый пятый подросток плохо слышит, хотя и не всегда догадывается об этом?
3.Каково условие резонанса? Почему возникают неприятные ощущения при длительной езде в автобусе, при плавании на корабле или качании на качелях, если собственная частота нашего вестибулярного аппарата близка к 6 Гц?
4.Назовите существующие простые административные меры по борьбе с шумом. Как борются с шумом с помощью технических устройств?
Текст по теме «Тепловые двигатели», содержащий информацию о воздействии тепловых двигателей на окружающую среду.
Задания на понимание основных факторов, вызывающих загрязнение, и выявление мер по снижению воздействия тепловых двигателей на природу
Дата: 2018-12-21, просмотров: 838.