Изучение математики в старшей школе даёт возможность достижения обучающимися следующих результатов.
Личностные:
1) сформированность мировоззрения, соответствующего современному уровню развития науки; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
2) готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;
3) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
4) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
5) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества;
6) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем.
Метапредметные:
1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
4) готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
5) умение использовать средства информационных и коммуникационных технологий (далее — ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
6) владение языковыми средствами — умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
7) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.
Предметные:
1) сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;
2) сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
3) владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
4) владение стандартными приёмами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений
и неравенств;
5) сформированность представлений об основных понятиях, идеях и методах математического анализа;
6) сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; сформированность умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
7) владение навыками использования готовых компьютерных программ при решении задач.
Содержание учебного предмета «Математика» (базовый уровень)
Класс
Алгебра и начала математического анализа.
Повторение
Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно-рациональных выражений. Модуль числа и его свойства. Решение задач на движение и совместную работу с помощью линейных и квадратных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков. Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности и функции . Графическое решение уравнений и неравенств.
Действительные числа
Понятие натурального числа. Множества чисел. Свойства действительных чисел. Метод математической индукции. Перестановки. Размещение. Сочетание.
Рациональные уравнения и неравенства.
Рациональные выражения. Формула бинома Ньютона, суммы и разности степеней. Рациональные уравнения. Системы рациональных уравнений. Метод интервалов решения неравенств. Рациональные неравенства. Нестрогие неравенства. Системы рациональных неравенств.
Корень степени n.
Понятие функции и ее графика. Функция у=х^n. Понятие корня степени n. Корни четной и нечетной степеней. Арифметический корень. Свойства корней степени n.
Степень положительного числа.
Степень с действительным показателем, свойства степени. Степенная функция и ее свойства и график. Иррациональные уравнения.
Метод интервалов для решения неравенств.
Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.
Логарифмы.
Логарифм числа, свойства логарифма. Десятичный логарифм. Число е. Натуральный логарифм. Преобразование логарифмических выражений.
Показательные и логарифмические уравнения и неравенства.
Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график.
Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических неравенств.
Взаимно обратные функции. Графики взаимно обратных функций.
Уравнения, системы уравнений с параметром.
Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график.
Синус и косинус угла.
Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°, 180°, 270°. ( рад). Формулы сложения тригонометрических функций, формулы приведения, формулы двойного аргумента..
Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции. Четность и нечетность функций. Сложные функции.
Тригонометрические функции . Функция . Свойства и графики тригонометрических функций.
Арккосинус, арксинус, арктангенс числа. Арккотангенс числа. Простейшие тригонометрические уравнения. Обратные тригонометрические функции, их свойства и графики. Решение простейших тригонометрических неравенств.
Тригонометрические уравнения и неравенства.
Решение тригонометрических уравнений.
Вероятность и статистика.
Решение задач на табличное и графическое представление данных. Использование свойств и характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии. Решение задач на определение частоты и вероятности событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики. Решение задач на вычисление вероятностей независимых событий, применение формулы сложения вероятностей. Решение задач с применением диаграмм Эйлера, дерева вероятностей, формулы Бернулли.
Условная вероятность. Правило умножения вероятностей. Формула полной вероятности.
Дискретные случайные величины и распределения. Независимые случайные величины. Распределение суммы и произведения независимых случайных величин.
Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин. Геометрическое распределение. Биномиальное распределение и его свойства.
Непрерывные случайные величины. Понятие о плотности вероятности. Равномерное распределение.
Показательное распределение, его параметры.
Понятие о нормальном распределении. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека).
Неравенство Чебышева. Теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе.
Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции.
Геометрия.
Повторение .
Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Решение задач с помощью векторов и координат.
Введение
Наглядная стереометрия. Фигуры и их изображения (куб, пирамида, призма). Основные понятия стереометрии и их свойства. Сечения куба и тетраэдра.
Параллельность прямых и плоскостей
Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них. Взаимное расположение прямых и плоскостей в пространстве. Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости.
Расстояния между фигурами в пространстве.
Перпендикулярность прямых и плоскостей
Углы в пространстве. Перпендикулярность прямых и плоскостей.
Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трех перпендикулярах.
Многогранники
Многогранники. Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды.
Класс
Дата: 2018-12-21, просмотров: 240.