Лекция 5. Физические механизмы воздействия радиации на живые организмы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

ДЕТЕКТОРЫ ЯДЕРНЫХ ИЗЛУЧЕНИЙ

Это устройства для регистрации α- и β-частиц, рентгеновского и γ-излучения, нейтронов, протонов и т.п. Они служат для определения состава излучения и измерения его интенсивности, спектра энергии частиц, изучения процессов взаимодействия быстрых частиц с атомными ядрами и распада нестабильных частиц.

Фотографический метод исторически был первым способом обнаружения ядерных излучений. Метод основан на почернении фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого или хлористого серебра (АgВr или АgСl), содержащихся в фотоэмульсии, восстанавливают металлическое серебро подобно видимому свету, которое после проявления выявляется в виде почернения. Степень почернения фотоэмульсии (фотопластинки, плёнки) пропорциональна дозе излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. В настоящее время фотографический метод широко применяется в ядерной физике при исследовании свойств самых различных заряженных частиц, их взаимодействий и ядерных реакций. На этом принципе основано использование индивидуальных фотодозиметров.

Химический метод. Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов Н+ и ОН-, образующихся в воде при ее облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основана работа химических дозиметров гамма- и нейтронного излучения ДП-70 и ДП-70М (МП).

Сцинтилляционный метод. Некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) светятся при воздействии на них ионизирующих излучений. Возникновение свечения является следствием возбуждения атомов под действием излучений. При возвращении в основное состояние атомы испускают фотоны видимого света различной яркости (сцинтилляция). Количество вспышек пропорционально мощности доз

 

Рис. 2.1. Фотоголовка сцинтилляционного детектора ионизирующей радиации.

Фотоны видимого света улавливаются специальным прибором – так называемым фотоэлектронным умножителем (ФЭУ), способным регистрировать каждую вспышку (рис. 2.1). В основу работы индивидуального измерителя дозы (ИД-11) положен сцинтилляционный метод обнаружения ионизирующих излучений. В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений.

Ионизационная камера представляет собой заполненный воздухом замкнутый объём, внутри которого находятся два изолированных друг от друга электрода (типа конденсатора). К электродам камеры прилагается напряжение от источника постоянного тока. При отсутствии ионизирующего излучения в цепи ионизационной камеры тока не будет, поскольку воздух является изолятором. При воздействии же излучений в ионизационной камере молекулы воздуха ионизируются. В электрическом поле положительно заряженные частицы перемещаются к катоду, а отрицательные — к аноду. В цепи камеры возникает ионизационный ток, который регистрируется микроамперметром. Числовое значение ионизационного тока пропорционально мощности излучения. Следовательно, по ионизационному току можно судить о мощности дозы излучений, воздействующей на камеру.

Ионизационные камеры в зависимости от назначения и конструкции могут работать в импульсном и токовым(интегральном) режимах. Импульсные камеры используют для регистрации отдельных тяжелых заряженных частиц (α-частицы, протоны и т.д.).

Удельная ионизация легких частиц (электроны, позитроны) сравнительно мала, поэтому регистрация их в импульсном режиме неэффективна. Токовые камеры применяют для измерения интенсивности всех типов излучения, которые пропорциональны среднему току, проходящему через камеру. Величина ионизационного тока пропорциональна энергии излучения, поэтому ионизационные камеры измеряют ток насыщения в единицу времени, т.е. мощность дозы данного излучения. Приборы градуируют в единицах мощности дозы. Значит, ионизационные камеры используют не только для измерения дозы излучения, но и ее мощности.

Пропорциональные счетчики выгодно отличаются от ионизационной камеры тем, что начальное усиление первичной ионизации происходит внутри самого счетчика (Кгу=103 - 104). Наличие пропорциональности усиления в счетчиках позволяет определить энергию ядерных частиц и изучить их природу. Пропорциональные счетчики бывают торцового типа, например САТ-7 и САТ-8 (счетчик α-частиц торцовый, СИ-3Б и др.). Чтобы обеспечить проникновение в плоскость счетчика α – частиц, входное слюдяное окно делают очень тонким (4-10 мкм). Наполняют счетчик смесью неона с аргоном почти до уровня атмосферного давления. В счетчиках открытого типа рабочая полость сообщается с внешним воздухом. Такие счетчики работают при атмосферном давлении, они допускают непрерывные протекание или циркуляцию наполняющего их газа и поэтому их часто используют для регистрации активности газовых проб.

Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой. Счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разреженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счётчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счётчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.

В газоразрядных счетчиках используют принцип усиления газового разряда. При отсутствии радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины, свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений.

Счетчики Гейгера – Мюллера (газоразрядные счетчики) конструктивно почти не отличаются от пропорциональных счетчиков цилиндрического торцового типа. Основное отличие состоит в том, что внутренний объем счетчика Гейгера наполнен инертным газом

Рис. 2.3. Схема включения счётчика Гейгера-Мюллера.

при пониженном давлении (15-75 гПа), а работа осуществляется в области Гейгера, т.е. в режиме самостоятельного газового разряда (рис. 2.3).

Счетчики для регистрации γ– излучения имеют некоторую особенность в конструкции. Регистрация γ–излучения возможна в результате выбивания вторичных электронов из катода счетчика на основе известных трех механизмов взаимодействия этого излучения с веществом: фотоэффекта, комптонэффекта, образования электронно–позитронных пар.

Вторичные электроны (фотоэлектроны, электроны отдачи, электронно-позитронные пары), попадая в чувствительный объем счетчика, вызывают газовый разряд (ударную ионизацию), который и регистрируется радиометрическим устройством. Этот закон Брэгга-Грея используется также и для дозиметрии нейтронов. Ионизационный метод положен в основу работы таких дозиметрических приборов, как ДП-5А (Б, В), ДП-ЗБ, ДП-22В и ИД-1.

Твердотельные дозиметры. В системе обеспечения радиационной безопасности широко используются твердотельные дозиметры. К последним относятся фотопленочные дозиметры, дозиметры, основанные на окрашивании твердых материалов, и, наконец, твердые вещества, активируемые нейтронами. В качестве примера твёрдотельных дозиметров можно привести полупроводниковые детекторы (ППД) ионизирующих излучений. Действие ППД основано насвойствах полупроводников проводить электрический импульс под действием ионизирующих излучений. Из всех полупроводников наиболее пригодны для детекторов монокристаллы германия и кремния.

 

Взаимодействие ионизирующего излучения с веществом

Под взаимодействием излучения с веществом понимают те физические и химические процессы, которые возникают в веществе при прохождении через него излучения. В резуль­тате взаимодействия с атомами и молекулами окружающей среды излучения постепенно растрачивают свою энергию. По­тери энергии могут быть двух видов: ионизационные и ра­диационные.

Ионизационные потери— это энергия излучения, растра­чиваемая на ионизацию и возбуждение атомов встречного вещества. Если энергии на ионизацию не хватает (34 эВ на ионную пару), то могут возникнуть возбужденные атомы или молекулы.

Ионизационные потери тем больше, чем больше заряд частицы и меньше ее скорость. В конечном счете кинетическая энергия, теряемая заряженными частицами, превращается в тепловую,

Радиационные потери— это процесс потери энергии излу­чения на торможение в электрическом поле ядра встречных атомов, при этом тормозящаяся частица изменяет свое направление. Радиационные потери тем выше, чем больше по­рядковый номер атомов среды и энергия частицы. Заряжен­ная частица приобретает в кулоновском поле ядра ускорение, а заряд, испытывающий ускорение, излучает энергию. Чем меньше масса частицы и чем больше заряд ядра, тем большее количество энергии излучается. При торможении частицы про­исходит излучение большого количества энергии в виде тор­мозного рентгеновского излучения.

При прохождении альфа-частицчерез вещество их энергия расходуется, главным образом, на взаимодействие с электро­нами атомов и молекул среды, что приводит к ионизации и возбуждению атомов или молекул. Треки альфа-частиц обыч­но прямолинейны. Это связано с тем, что их масса примерно в 7000 раз больше масс электронов, с которыми они взаимо­действуют. Взаимодействуя с электронами среды, альфа-час­тицы получают импульс, который слишком мал, чтобы замет­но отклонить их от прямолинейного пути.

Бета-излучение, обладая электрическим зарядом, во вза­имодействии с веществом имеет много общего с альфа-излу­чением. Для бета-частиц низких энергий наибольшее значение имеют ионизационные потери, поскольку большая часть их энергии тратится на ионизацию и возбуждение атомов среды. В области высоких энергий, наоборот, решающее значение приобретают радиационные потери, т. е. потери на торможе­ние частиц в электрическом поле ядра.

Бета-частицы из-за малой массы сильно отклоняются элек­тростатическим полем взаимодействующих с ними атомов. Поэтому путь движения бета-частиц в веществе очень извилист и их пробег в веществе нельзя характеризовать длиной трека, так как их действительные траектории движения оказывают­ся в 1,5—4 раза больше толщины поглощающего слоя.

Гамма-кванты,также как альфа- и бета-частицы, растрачивают свою энергию в основном за счет взаимодействия с электро­нами атомов среды. При этом имеют место три основных эффекта взаимодействия гамма-лучей с веществом: фотоэффект, Комптоновское рассеяние и образование электронно-позитронных пар (рис. 2).

 

Рис. 2. Виды взаимодействия гамма-излучения с веществом:

а — фотоэлектрическое поглощение; б— комптоновский эффект; в — образование пар.

Фотоэффектзаключается в том, что гамма-квант, взаимо­действуя с атомом или молекулой, выбивает из них электрон (называемый обычно фотоэлектроном). При этом гамма-квант полностью поглощается, вся его энергия передается электро­ну. В результате электрон приобретает кинетическую энергию, равную энергии гамма-кванта, за вычетом энергии связи электрона в атоме. Этот вид взаимодействия наиболее вероятен, если энергия гамма-кванта меньше 0,1–0,2 МэВ. Фотоэлектрическое поглощение быстро уменьшается с повышением энергии излучения. Вероятность фотоэффекта зависит от атомного номера и пропорциональна числу протонов поглотителя.

Комптоновское рассеяние это процесс, при котором g- кванты, сталкиваясь с электронами атомов вещества, передают им не всю свою энергию, а только часть ее, и после соударения изменяют свое направление движения, т. е. рассеиваются. Эффект Комптона возникает, когда поглотитель имеет малый атомный вес, а g- кванты энергию порядка 0,2 МэВ и более.

Некоторые гамма-кванты с энергией не ниже 1,02 МэВ, проходя через вещество, превращаются под действием сильного электрического поля вблизи ядра атома в пару «электрон-позитрон». Возникновение пары «электрон-позитрон» приводит (как и фотоэффект) к полному погло­щению энергии гамма-кванта. Позитроны, замедляясь вещест­вом, взаимодействуют с электронами среды, давая аннигиляционное гамма-излучение.

От характера взаимодействия излучения с веществом за­висит проникающая способность излучения, знать которую необходимо для решения многих задач, таких как выбор метода регистрации излучения, расчет толщины защитных экранов и др.

Ионизирующее действие излучений широко используется для их регистрации.

 

 

Анализ процесса поглощения энергии ионизирующего излучения

 

Линейная потеря энергии и линейная плотность ионизации.

Формы лучевой гибели клеток

Важнейшим радиобиологическим эффектом является гибель клеток. Различают две основные ее формы: репродуктивную, т.е. непосредственно связанную с процессом деления клетки, и интерфазную, которая может произойти в любой фазе клеточного цикла.

Лекция 5. Физические механизмы воздействия радиации на живые организмы

Виды ионизирующих излучений.

Ионизирующие излучения (ИИ) — потоки элементарных частиц (электронов, позитронов, протонов, нейтронов) и квантов электромагнитной энергии, прохождение которых через вещество приводит к ионизации (образованию разнополярных ионов) и возбуждению его атомов и молекул. Ионизация — превращение нейтральных атомов или молекул в электрически заряженные частицы – ионы.ьИИ попадают на Землю в виде космических лучей, возникают в результате радиоактивного распада атомных ядер (απ β-частицы, γ– и рентгеновские лучи), создаются искусственно на ускорителях заряженных частиц. Практический интерес представляют наиболее часто встречающиеся виды ИИ – потоки а– и β-частиц, γ-излучение, рентгеновские лучи и потоки нейтронов.

Альфа-излучение (а) – поток положительно заряженных частиц – ядер гелия. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская α-частицу, теряют 2 протона и 2 нейтрона. Скорость частиц при распаде составляет 20 тыс. км/с. При этом α-частицы обладают наименьшей проникающей способностью, длина их пробега (расстояние от источника до поглощения) в теле равна 0,05 мм, в воздухе – 8–10 см. Они не могут пройти даже через лист бумаги, но плотность ионизации на единицу величины пробега очень велика (на 1 см до десятка тысяч пар), поэтому эти частицы обладают наибольшей ионизирующей способностью и опасны внутри организма.

Бета-излучение (β) – поток отрицательно заряженных частиц. В настоящее время известно около 900 бета-радиоактивных изотопов. Масса β-частиц в несколько десятков тысяч раз меньше α-частиц, но они обладают бо́льшей проникающей способностью. Их скорость равна 200–300 тыс. км/с. Длина пробега потока от источника в воздухе составляет 1800 см, в тканях человека – 2,5 см. β-частицы полностью задерживаются твердыми материалами (алюминиевой пластиной в 3,5 мм, органическим стеклом); их ионизирующая способность в 1000 раз меньше, чем у α-частиц.

Гамма-излучение (γ) – электромагнитное излучение с длиной волны от 1 · 10-7 м до 1 · 10-14 м; испускается при торможении быстрых электронов в веществе. Оно возникает при распаде большинства радиоактивных веществ и обладает большой проникающей способностью; распространяется со скоростью света. В электрических и магнитных полях γ-лучи не отклоняются. Это излучение обладает меньшей ионизирующей способностью, чем а– и β-излучение, так как плотность ионизации на единицу длины очень низкая.

Рентгеновское излучение может быть получено в специальных рентгеновских трубках, в электронных ускорителях, при торможении быстрых электронов в веществе и при переходе электронов с внешних электронных оболочек атома на внутренние, когда создаются ионы. Рентгеновские лучи, как и γ-излучение, обладают малой ионизирующей способностью, но большой глубиной проникновения.

Нейтроны — элементарные частицы атомного ядра, их масса в 4 раза меньше массы α-частиц. Время их жизни – около 16 мин. Нейтроны не имеют электрического заряда. Длина пробега медленных нейтронов в воздухе составляет около 15 м, в биологической среде – 3 см; для быстрых нейтронов – соответственно 120 м и 10 см. Последние обладают высокой проникающей способностью и представляют наибольшую опасность.

Выделяют два вида ионизирующих излучений:

• корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (α-, β– и нейтронное излучения);

• электромагнитное (γ– и рентгеновское излучение) – с очень малой длиной волны.

Для оценки воздействия ионизирующего излучения на любые вещества и живые организмы используются специальные величины –дозы излучения. Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и γ-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объеме воздуха к массе воздуха в этом объеме. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р. При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важнейшим из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза.

Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества, и определяется отношением поглощенн

ой энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад. Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, было введено понятие эквивалентной дозы.

Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент – коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Значения коэффициента для различных видов излучений приведены в табл. 7.

Таблица 7

Коэффициент относительной биологической эффективности для различных видов излучений

 

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр. Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

 

Естественные и искусственные источники ионизирующей радиации

 К естественным источникам ионизирующих излучений относятся космическое излучение и естественные радиоактивные вещества, находящиеся на поверхности и в недрах Земли, в атмосфере, воде, растениях и организмах всех живых существ, населяющих нашу планету.

Источниками космического излучения являются звездные взрывы в галактике и солнечные вспышки.

Солнечное космическое излучение не приводит к заметному увеличению дозы излучения на поверхности Земли.

Недавно установлено, что один из наиболее распространенных источников радиации — радон. Это невидимый, не имеющий ни вкуса, ни запаха, тяжелый газ (в 7,5 раза тяжелее воздуха). Он высвобождается из земной коры повсеместно. Его концентрация в закрытых помещениях обычно в 8 раз выше, чем на улице. Лучшая защита от него — хорошая вентиляция подвальных помещений и жилых комнат.

Другие источники поступления радона в жилые помещения — вода и природный газ. При кипячении воды радон улетучивается, в сырой же воде его намного больше. Основную опасность представляет его попадание в легкие с парами воды. Чаще всего это происходит в ванной при приеме горячего душа.
Под землей радон смешивается с природным газом и при сжигании того в кухонных плитах, отопительных и других нагревательных приборах попадает в помещения.

Годовая доза облучения людей естественными источниками составляет примерно 30—100 мбэр (0,03—0,1 бэр). Известны пять географических районов на нашей планете, в которых естественный радиационный фон существенно больше, чем в других. Это Бразилия, Франция, Индия, о. Ниуэ в Тихом океане и Египет. Население, проживающее в этих районах, тщательно обследовали. Однако никакой связи между повышенным уровнем радиации и биологическими нарушениями не установлено.

К искусственным источникам ионизирующих излучений относятся: производства, связанные с использованием радиоактивных изотопов, атомные электростанции, транспортные и научно-исследовательские ядерно-энергетические установки, специальные военные объекты, рентгеновская техника и медицинская аппаратура лучевой терапии, а также бытовые излучатели.

 

Дозиметрия излучений и приборные средства ее реализации

Радиоактивные излучения не воспринимаются органами чувств. Они могут быть обнаружены (детектированы) при помощи приборов и приспособлений, работа которых основана на физико-химических эффектах, возникающих при взаимодействии излучении с веществом.

В результате взаимодействия радиоактивного излучения с внешней средой происходит ионизация и возбуждение ее нейтральных атомов и молекул. Такое воздействие вызывает изменения физико-химических свойств облучаемой среды. Указанными свойствами являются: электропроводность веществ (газов, жидкостей, твердых материалов);люминесценция (свечение) некоторых веществ; засвечивание фотопленок; изменение цвета, окраски, прозрачности, сопротивления электрическому току химических растворов и др. Эти явления приняты за основу при разработке методов регистрации и измерения ионизирующих излучений – фотографический, сцинтилляционный, химический и ионизационный методы.

 


ДЕТЕКТОРЫ ЯДЕРНЫХ ИЗЛУЧЕНИЙ

Это устройства для регистрации α- и β-частиц, рентгеновского и γ-излучения, нейтронов, протонов и т.п. Они служат для определения состава излучения и измерения его интенсивности, спектра энергии частиц, изучения процессов взаимодействия быстрых частиц с атомными ядрами и распада нестабильных частиц.

Фотографический метод исторически был первым способом обнаружения ядерных излучений. Метод основан на почернении фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого или хлористого серебра (АgВr или АgСl), содержащихся в фотоэмульсии, восстанавливают металлическое серебро подобно видимому свету, которое после проявления выявляется в виде почернения. Степень почернения фотоэмульсии (фотопластинки, плёнки) пропорциональна дозе излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. В настоящее время фотографический метод широко применяется в ядерной физике при исследовании свойств самых различных заряженных частиц, их взаимодействий и ядерных реакций. На этом принципе основано использование индивидуальных фотодозиметров.

Химический метод. Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов Н+ и ОН-, образующихся в воде при ее облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основана работа химических дозиметров гамма- и нейтронного излучения ДП-70 и ДП-70М (МП).

Сцинтилляционный метод. Некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) светятся при воздействии на них ионизирующих излучений. Возникновение свечения является следствием возбуждения атомов под действием излучений. При возвращении в основное состояние атомы испускают фотоны видимого света различной яркости (сцинтилляция). Количество вспышек пропорционально мощности доз

 

Рис. 2.1. Фотоголовка сцинтилляционного детектора ионизирующей радиации.

Фотоны видимого света улавливаются специальным прибором – так называемым фотоэлектронным умножителем (ФЭУ), способным регистрировать каждую вспышку (рис. 2.1). В основу работы индивидуального измерителя дозы (ИД-11) положен сцинтилляционный метод обнаружения ионизирующих излучений. В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений.

Ионизационная камера представляет собой заполненный воздухом замкнутый объём, внутри которого находятся два изолированных друг от друга электрода (типа конденсатора). К электродам камеры прилагается напряжение от источника постоянного тока. При отсутствии ионизирующего излучения в цепи ионизационной камеры тока не будет, поскольку воздух является изолятором. При воздействии же излучений в ионизационной камере молекулы воздуха ионизируются. В электрическом поле положительно заряженные частицы перемещаются к катоду, а отрицательные — к аноду. В цепи камеры возникает ионизационный ток, который регистрируется микроамперметром. Числовое значение ионизационного тока пропорционально мощности излучения. Следовательно, по ионизационному току можно судить о мощности дозы излучений, воздействующей на камеру.

Ионизационные камеры в зависимости от назначения и конструкции могут работать в импульсном и токовым(интегральном) режимах. Импульсные камеры используют для регистрации отдельных тяжелых заряженных частиц (α-частицы, протоны и т.д.).

Удельная ионизация легких частиц (электроны, позитроны) сравнительно мала, поэтому регистрация их в импульсном режиме неэффективна. Токовые камеры применяют для измерения интенсивности всех типов излучения, которые пропорциональны среднему току, проходящему через камеру. Величина ионизационного тока пропорциональна энергии излучения, поэтому ионизационные камеры измеряют ток насыщения в единицу времени, т.е. мощность дозы данного излучения. Приборы градуируют в единицах мощности дозы. Значит, ионизационные камеры используют не только для измерения дозы излучения, но и ее мощности.

Пропорциональные счетчики выгодно отличаются от ионизационной камеры тем, что начальное усиление первичной ионизации происходит внутри самого счетчика (Кгу=103 - 104). Наличие пропорциональности усиления в счетчиках позволяет определить энергию ядерных частиц и изучить их природу. Пропорциональные счетчики бывают торцового типа, например САТ-7 и САТ-8 (счетчик α-частиц торцовый, СИ-3Б и др.). Чтобы обеспечить проникновение в плоскость счетчика α – частиц, входное слюдяное окно делают очень тонким (4-10 мкм). Наполняют счетчик смесью неона с аргоном почти до уровня атмосферного давления. В счетчиках открытого типа рабочая полость сообщается с внешним воздухом. Такие счетчики работают при атмосферном давлении, они допускают непрерывные протекание или циркуляцию наполняющего их газа и поэтому их часто используют для регистрации активности газовых проб.

Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой. Счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разреженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счётчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счётчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.

В газоразрядных счетчиках используют принцип усиления газового разряда. При отсутствии радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины, свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений.

Счетчики Гейгера – Мюллера (газоразрядные счетчики) конструктивно почти не отличаются от пропорциональных счетчиков цилиндрического торцового типа. Основное отличие состоит в том, что внутренний объем счетчика Гейгера наполнен инертным газом

Рис. 2.3. Схема включения счётчика Гейгера-Мюллера.

при пониженном давлении (15-75 гПа), а работа осуществляется в области Гейгера, т.е. в режиме самостоятельного газового разряда (рис. 2.3).

Счетчики для регистрации γ– излучения имеют некоторую особенность в конструкции. Регистрация γ–излучения возможна в результате выбивания вторичных электронов из катода счетчика на основе известных трех механизмов взаимодействия этого излучения с веществом: фотоэффекта, комптонэффекта, образования электронно–позитронных пар.

Вторичные электроны (фотоэлектроны, электроны отдачи, электронно-позитронные пары), попадая в чувствительный объем счетчика, вызывают газовый разряд (ударную ионизацию), который и регистрируется радиометрическим устройством. Этот закон Брэгга-Грея используется также и для дозиметрии нейтронов. Ионизационный метод положен в основу работы таких дозиметрических приборов, как ДП-5А (Б, В), ДП-ЗБ, ДП-22В и ИД-1.

Твердотельные дозиметры. В системе обеспечения радиационной безопасности широко используются твердотельные дозиметры. К последним относятся фотопленочные дозиметры, дозиметры, основанные на окрашивании твердых материалов, и, наконец, твердые вещества, активируемые нейтронами. В качестве примера твёрдотельных дозиметров можно привести полупроводниковые детекторы (ППД) ионизирующих излучений. Действие ППД основано насвойствах полупроводников проводить электрический импульс под действием ионизирующих излучений. Из всех полупроводников наиболее пригодны для детекторов монокристаллы германия и кремния.

 

Взаимодействие ионизирующего излучения с веществом

Под взаимодействием излучения с веществом понимают те физические и химические процессы, которые возникают в веществе при прохождении через него излучения. В резуль­тате взаимодействия с атомами и молекулами окружающей среды излучения постепенно растрачивают свою энергию. По­тери энергии могут быть двух видов: ионизационные и ра­диационные.

Ионизационные потери— это энергия излучения, растра­чиваемая на ионизацию и возбуждение атомов встречного вещества. Если энергии на ионизацию не хватает (34 эВ на ионную пару), то могут возникнуть возбужденные атомы или молекулы.

Ионизационные потери тем больше, чем больше заряд частицы и меньше ее скорость. В конечном счете кинетическая энергия, теряемая заряженными частицами, превращается в тепловую,

Радиационные потери— это процесс потери энергии излу­чения на торможение в электрическом поле ядра встречных атомов, при этом тормозящаяся частица изменяет свое направление. Радиационные потери тем выше, чем больше по­рядковый номер атомов среды и энергия частицы. Заряжен­ная частица приобретает в кулоновском поле ядра ускорение, а заряд, испытывающий ускорение, излучает энергию. Чем меньше масса частицы и чем больше заряд ядра, тем большее количество энергии излучается. При торможении частицы про­исходит излучение большого количества энергии в виде тор­мозного рентгеновского излучения.

При прохождении альфа-частицчерез вещество их энергия расходуется, главным образом, на взаимодействие с электро­нами атомов и молекул среды, что приводит к ионизации и возбуждению атомов или молекул. Треки альфа-частиц обыч­но прямолинейны. Это связано с тем, что их масса примерно в 7000 раз больше масс электронов, с которыми они взаимо­действуют. Взаимодействуя с электронами среды, альфа-час­тицы получают импульс, который слишком мал, чтобы замет­но отклонить их от прямолинейного пути.

Бета-излучение, обладая электрическим зарядом, во вза­имодействии с веществом имеет много общего с альфа-излу­чением. Для бета-частиц низких энергий наибольшее значение имеют ионизационные потери, поскольку большая часть их энергии тратится на ионизацию и возбуждение атомов среды. В области высоких энергий, наоборот, решающее значение приобретают радиационные потери, т. е. потери на торможе­ние частиц в электрическом поле ядра.

Бета-частицы из-за малой массы сильно отклоняются элек­тростатическим полем взаимодействующих с ними атомов. Поэтому путь движения бета-частиц в веществе очень извилист и их пробег в веществе нельзя характеризовать длиной трека, так как их действительные траектории движения оказывают­ся в 1,5—4 раза больше толщины поглощающего слоя.

Гамма-кванты,также как альфа- и бета-частицы, растрачивают свою энергию в основном за счет взаимодействия с электро­нами атомов среды. При этом имеют место три основных эффекта взаимодействия гамма-лучей с веществом: фотоэффект, Комптоновское рассеяние и образование электронно-позитронных пар (рис. 2).

 

Рис. 2. Виды взаимодействия гамма-излучения с веществом:

а — фотоэлектрическое поглощение; б— комптоновский эффект; в — образование пар.

Фотоэффектзаключается в том, что гамма-квант, взаимо­действуя с атомом или молекулой, выбивает из них электрон (называемый обычно фотоэлектроном). При этом гамма-квант полностью поглощается, вся его энергия передается электро­ну. В результате электрон приобретает кинетическую энергию, равную энергии гамма-кванта, за вычетом энергии связи электрона в атоме. Этот вид взаимодействия наиболее вероятен, если энергия гамма-кванта меньше 0,1–0,2 МэВ. Фотоэлектрическое поглощение быстро уменьшается с повышением энергии излучения. Вероятность фотоэффекта зависит от атомного номера и пропорциональна числу протонов поглотителя.

Комптоновское рассеяние это процесс, при котором g- кванты, сталкиваясь с электронами атомов вещества, передают им не всю свою энергию, а только часть ее, и после соударения изменяют свое направление движения, т. е. рассеиваются. Эффект Комптона возникает, когда поглотитель имеет малый атомный вес, а g- кванты энергию порядка 0,2 МэВ и более.

Некоторые гамма-кванты с энергией не ниже 1,02 МэВ, проходя через вещество, превращаются под действием сильного электрического поля вблизи ядра атома в пару «электрон-позитрон». Возникновение пары «электрон-позитрон» приводит (как и фотоэффект) к полному погло­щению энергии гамма-кванта. Позитроны, замедляясь вещест­вом, взаимодействуют с электронами среды, давая аннигиляционное гамма-излучение.

От характера взаимодействия излучения с веществом за­висит проникающая способность излучения, знать которую необходимо для решения многих задач, таких как выбор метода регистрации излучения, расчет толщины защитных экранов и др.

Ионизирующее действие излучений широко используется для их регистрации.

 

 

Анализ процесса поглощения энергии ионизирующего излучения

 

Линейная потеря энергии и линейная плотность ионизации.

Дата: 2018-12-21, просмотров: 2347.