Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме:
1.анаболизм (ассимиляция, пластический обмен) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.
2.катаболизм (диссимиляция, энергетический обмен) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.
Анаболизм и катаболизм связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.
Живые существа для своей жизнедеятельности используют световую и химическую энергию.
Зеленые растения – автотрофы – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода.
Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами.
Особая группа организмов – миксотрофы – питаются смешанным способом – это растения росянка, венерина мухоловка (среди растений есть даже гетеротроф – раффлезия); одноклеточное животное эвглена зеленая.
Ферменты – это специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций.
Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр, пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.
Ферментами катализируются все биохимические реакции.
Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.
Диссимиляция
Организмы могут быть разделены на две группы и по характеру диссимиляции – аэробы и анаэробы. Аэробы нуждаются в свободном кислороде для жизнедеятельности. У анаэробов в нем нет необходимости. У них диссимиляция осуществляется путем брожения – бескислородного, ферментативного расщепления органического вещества с образованием более простых органических же веществ и выделением энергии. Например:
> молочнокислое брожение:
> спиртовое брожение:
Образующиеся при брожении вещества являются органическими и, следовательно, содержат еще много энергии.
Энергетический обмен (диссимиляция) – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каждый из которых сопровождается несколькими ферментативными реакциями.
Первый этап – подготовительный. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.
Второй этап – бескислородный (гликолиз). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ.
Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла.
В клетках дрожжей и растений (при недостатке кислорода) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением.
Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата, при это появляется боль в мышцах.
Третий этап – кислородный, состоящий из двух последовательных процессов:
- цикла Кребса
- окислительного фосфорилирования.
Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.
Окислительное фосфорилирование (клеточное дыхание) происходит на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики, которые транспортируют электроны к молекулярному кислороду. В ходе этой стадии часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.
Суммарная реакция энергетического обмена:
С6Н12O6 + 6O2 → 6СO2 + 6Н2O + 38АТФ.
Тематические задания
А1. Способ питания хищных животных называется
1) автотрофным
2) миксотрофным
3) гетеротрофным
4) хемотрофным
А2. Совокупность реакций обмена веществ называется:
1) анаболизм
2) ассимиляция
3) диссимиляция
4) метаболизм
А3. На подготовительном этапе энергетического обмена образуются:
1) 2 молекулы АТФ и глюкоза
2) 36 молекул АТФ и молочная кислота
3) аминокислоты, глюкоза, жирные кислоты
4) уксусная кислота и спирт
А4. Вещества, катализирующие биохимические реакции в организме, –
1) белки
2) нуклеиновые кислоты
3) липиды
4) углеводы
А5. Процесс синтеза АТФ в ходе окислительного фосфорилирования происходит в:
1) цитоплазме
2) рибосомах
3) митохондриях
4) аппарате Гольджи
А6. Энергия АТФ, запасенная в процессе энергетического обмена, частично используется для реакций:
1) подготовительного этапа
2) гликолиза
3) кислородного этапа
4) синтеза органических соединений
А7. Продуктами гликолиза являются:
1) глюкоза и АТФ
2) СО2 и вода
3) ПВК и АТФ
4) белки, жиры, углеводы
Часть В
В1. Выберите события, происходящие на подготовительном этапе энергетического обмена у человека
1) белки распадаются до аминокислот
2) глюкоза расщепляется до углекислого газа и воды
3) синтезируются 2 молекулы АТФ
4) гликоген расщепляется до глюкозы
5) образуется молочная кислота
6) липиды расщепляются до глицерина и жирных кислот
В2. Определите последовательность превращений куска сырого картофеля в процессе энергетического обмена в организме свиньи:
А) образование пирувата
Б) образование глюкозы
В) всасывание глюкозы в кровь
Г) образование углекислого газа и воды
Д) окислительное фосфорилирование и образование Н2О
Е) цикл Кребса и образование СО2
Фотосинтез и хемосинтез
Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза.
Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно.
Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной.
В настоящее время установлено, что фотосинтез – это процесс образования органических соединений из СО2 и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.
Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл, молекула которого способна возбуждаться под действием солнечного света, отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода: световую и темновую фазы.
Световая фаза – это этап, на котором поглощенная хлорофиллом энергия света преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.
Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:
1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;
2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н
2Н+ + 4е- + НАДФ+ → НАДФ • Н;
3) фотолиз воды: 2Н2О → 4Н+ + 4е- + О2.
Данный процесс происходит внутри тилакоидов – складок внутренней мембраны хлоропластов, из которых формируются граны – стопки мембран.
Результаты световых реакций:
фотолиз воды с образованием свободного кислорода,
синтез АТФ,
восстановление НАДФ+ до НАДФ • Н.
Темновая фаза – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н.
Результат темновых реакций: превращение углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.
Дата: 2018-12-21, просмотров: 541.