Эволюционное программирование
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Проиллюстрируем современное состояние данного подхода на примере системы PolyAnalyst — отечественной разработке, получившей сегодня общее признание на рынке Data Mining. В данной системе гипотезы о виде зависимости целевой переменной от других переменных формулируются в виде программ на некотором внутреннем языке программирования. Процесс построения программ строится как эволюция в мире программ (этим подход немного похож на генетические алгоритмы). Когда система находит программу, более или менее удовлетворительно выражающую искомую зависимость, она начинает вносить в нее небольшие модификации и отбирает среди построенных дочерних программ те, которые повышают точность. Таким образом система "выращивает" несколько генетических линий программ, которые конкурируют между собой в точности выражения искомой зависимости. Специальный модуль системы PolyAnalyst переводит найденные зависимости с внутреннего языка системы на понятный пользователю язык (математические формулы, таблицы и пр.).

Другое направление эволюционного программирования связано с поиском зависимости целевых переменных от остальных в форме функций какого-то определенного вида. Например, в одном из наиболее удачных алгоритмов этого типа — методе группового учета аргументов (МГУА) зависимость ищут в форме полиномов. В настоящее время из продающихся в России систем МГУА реализован в системе NeuroShell компании Ward Systems Group.

Стоимость систем до $ 5000.

Генетические алгоритмы

Data Mining не основная область применения генетических алгоритмов. Их нужно рассматривать скорее как мощное средство решения разнообразных комбинаторных задач и задач оптимизации. Тем не менее генетические алгоритмы вошли сейчас в стандартный инструментарий методов Data Mining, поэтому они и включены в данный обзор.

Первый шаг при построении генетических алгоритмов — это кодировка исходных логических закономерностей в базе данных, которые именуют хромосомами, а весь набор таких закономерностей называют популяцией хромосом. Далее для реализации концепции отбора вводится способ сопоставления различных хромосом. Популяция обрабатывается с помощью процедур репродукции, изменчивости (мутаций), генетической композиции. Эти процедуры имитируют биологические процессы. Наиболее важные среди них: случайные мутации данных в индивидуальных хромосомах, переходы (кроссинговер) и рекомбинация генетического материала, содержащегося в индивидуальных родительских хромосомах (аналогично гетеросексуальной репродукции), и миграции генов. В ходе работы процедур на каждой стадии эволюции получаются популяции со все более совершенными индивидуумами.

Генетические алгоритмы удобны тем, что их легко распараллеливать. Например, можно разбить поколение на несколько групп и работать с каждой из них независимо, обмениваясь время от времени несколькими хромосомами. Существуют также и другие методы распараллеливания генетических алгоритмов.

Генетические алгоритмы имеют ряд недостатков. Критерий отбора хромосом и используемые процедуры являются эвристическими и далеко не гарантируют нахождения “лучшего” решения. Как и в реальной жизни, эволюцию может “заклинить” на какой-либо непродуктивной ветви. И, наоборот, можно привести примеры, как два неперспективных родителя, которые будут исключены из эволюции генетическим алгоритмом, оказываются способными произвести высокоэффективного потомка. Это особенно становится заметно при решении высокоразмерных задач со сложными внутренними связями.

Примером может служить система GeneHunter фирмы Ward Systems Group. Его стоимость — около $1000.

Дата: 2018-12-21, просмотров: 199.