Плиты перекрытий для уменьшения расхода материалов проектируют облегченными - пустотными или ребристыми (рис. 7.2,а). При удалении бетона из растянутой зоны сохраняют лишь ребра шириной, необходимой для размещения сварных каркасов и обеспечения прочности панелей по наклонному сечению. При этом плита в пролете между ригелями работает на изгиб как балка таврового сечения. Верхняя полка плиты также работает на местный изгиб между ребрами. Нижняя полка, образующая замкнутую пустоту, создается при необходимости устройства гладкого потолка.
Рис. 7.2. Формы поперечного сечения плит перекрытий
Плиты изготовляют с пустотами различной формы: овальной, круглой и т. п. В панелях значительной ширины устраивают несколько рядом расположенных пустот (рис. 7.2.а).
Общий принцип проектирования плит перекрытий любой формы поперечного сечения состоит в удалении возможно большего объема бетона из растянутой зоны с сохранением вертикальных ребер, обеспечивающих прочность элемента по наклонному сечению, в увязке с технологическими возможностями завода - изготовителя.
По форме поперечного сечения плиты бывают с овальными, круглыми и вертикальными пустотами, ребристые с ребрами вверх (с устройством чистого пола по ребрам), ребристые с ребрами вниз, сплошные (рис. 7.2а - е).
В плитах с пустотами минимальная толщина полок 25—30 мм, ребер 30—35 мм; в ребристых плитах с ребрами вниз толщина полки (плиты) 50—60 мм.
При заданной длине плит разных типов ширину их принимают такой, чтобы получить градации массы, не превышающие грузоподъемность монтажных кранов 3…5 т, а иногда и больше. Плиты шириной 3,2 м при пролете 6 м перекрывают целиком жилую комнату; масса таких плит с пустотами 5…6 т. Пустотные и сплошные плиты, позволяющие создать гладкий потолок, применяют для жилых и гражданских зданий, ребристые панели ребрами вниз - для промышленных зданий с нормативными нагрузками свыше 5 кН/м2.
Экономичность плиты оценивают по приведенной толщине бетона, которая получается делением объема бетона панели на ее площадь и по расходу стальной арматуры (табл. 7.1).
Таблица 7.1
Технико-экономические показатели плит перекрытий при номинальном пролете 6 м и нормативной нагрузке 6-7 кН/м2
Тип плиты | Приведенная толщина бетона, см | Расход стали на 1 м2 площади в зависимости от вида арматуры. кг | ||
без предварительного напряжения | напрягаемая | |||
стержне- вая | проволочная | |||
С овальными пустотами С вертикальными пустотами С круглыми пустотами Ребристые, ребрами вверх Сплошные | 9.2 10.2 12 8 12—16 | 8 8.5 8,5 9.1 14-16 | 4,3 4,7 4,7 5 12—14 | 3,4 3,7 3,7 4 10—11 |
Наиболее экономичны по расходу бетона плиты с овальными пустотами; приведенная толщина бетона в них 9,2 см, в то время как в плитах с круглыми пустотами приведенная толщина бетона достигает 12 см. Однако при изготовлении панелей с овальными пустотами на заводах возникают технологические трудности, вызванные тем, что после извлечения пустотообразователей (пуансонов) стенки каналов свежеотформованного изделия иногда обваливаются.
Расчет панелей.
Расчетный пролет плит l 0 принимают равным расстоянию между осями ее опор (рис. 7.3. а — в); при опирании по верху ригелей l 0 = l - b /2 (где b — ширина ригеля); при опирании на полки ригелей l 0 = l – a - b (а — размер полки). При опирании одним концом на ригель, другим на стенку расчетный пролет равен расстоянию от оси опоры на стене до оси опоры на ригеле.
Рис. 7.3. Расчетные пролеты и сечения плит
Высота сечения плиты h должна быть подобрана так, чтобы наряду с условиями прочности были удовлетворены требования жесткости (предельных прогибов). При пролетах 5—7 м высота сечения плиты определяется главным образом требованиями жесткости. Предварительно высоту сечения панели, удовлетворяющую одновременно условиям прочности и требованиям жесткости, можно определить по приближенной формуле
(7.1)
где с — коэффициент, для пустотных панелей он равен 18 - 20, для ребристых панелей с полкой в сжатой зоне – 30 - 34;
— длительно действующая нормативная нагрузка на 1 м2 перекрытия;
— кратковременно действующая нормативная нагрузка на 1 м2 перекрытия;
— коэффициент увеличения прогибов при длительном действии нагрузки: для пустотелых панелей = 2, для ребристых панелей с полкой в сжатой зоне = 1,5.
Высоту сечения предварительно напряженных плит можно предварительно назначать равной:
h= l 0 /20 - для ребристых; h= l 0 /30 - для пустотных.
При расчете прочности по изгибающему моменту ширина ребра равна суммарной ширине всех ребер плиты, а расчетная ширина сжатой полки принимается равной полной ширине панели. При малой толщине сжатой полки, когда , ширина полки, вводимая в расчет, не должна превышать
(7.2)
где n — число ребер в поперечном сечении панели.
В ребристой панели ребрами вниз при толщине полки но при наличии поперечных ребер, вводимая в расчет ширина полки принимается равной полной ширине панели.
Таким образом, расчет прочности плит сводится к расчету таврового сечения с полкой в сжатой зоне.
При расчете прогибов сечения панелей с пустотами приводят к эквивалентным двутавровым сечениям. Для панелей с круглыми пустотами эквивалентное двутавровое сечение находят из условия, что площадь круглого отверстия диаметром d равна площади квадратного отверстия со стороной (рис. 7.4):
(7.3)
Рис. 7.4. Эквивалентные сечения плит для расчета прогибов
Сечение панелей с овальными пустотами (см. рис. 7.4) приводят к эквивалентному двутавровому сечению, заменяя овальное сечение пустоты прямоугольным с той же площадью и тем же моментом инерции и соблюдая условие совпадения центра тяжести овала и заменяющего прямоугольника. Обозначив b 1 и h 1 — ширину и высоту эквивалентного прямоугольника; F и I — площадь и момент инерции овала:
; (7.4)
Полка панели работает на местный изгиб как частично защемленная на опорах плита пролетом l 0, равным расстоянию в свету между ребрами. В ребристых панелях с ребрами вниз защемление полки создается заливкой бетоном швов, препятствующей повороту ребра (рис. 7.5, а). Изгибающий момент
(7.5)
В ребристой панели с поперечными промежуточными ребрами изгибающие моменты полки могут определяться как в плите, опертой по контуру и работающей в двух направлениях (рис. 7.5,б).
Рис. 7.5. Расчетные схемы полок плит
Конструирование плит
Применяют сварные сетки и каркасы из обыкновенной арматурной проволоки и горячекатаной арматуры периодического профиля (рис. 7.6). В качестве напрягаемой продольной арматуры применяют стержни классов S800, S1200, высокопрочную проволоку и канаты. Армировать можно без предварительного напряжения, если пролет панели меньше 6 м.
Продольную рабочую арматуру располагают по всей ширине нижней полки сечения пустотных панелей и в ребрах ребристых панелей.
1 – продольная напрягаемая арматура; 2 – нижняя сварная сетка; 3 – то же, верхняя; 4 – вертикальный сварной каркас; 5 – то же, сетка Рис. 7.6. Многопустотные панели с круглыми (а) и овальными (б) пустотами, а также коробчатый настил (д) |
Поперечные стержни объединяют с продольной монтажной или рабочей ненапрягаемой арматурой в плоские сварные каркасы, которые размещают в ребрах плит. Плоские сварные каркасы в круглопустотных плитах могут размещаться только на приопорных участках, через одно-два ребра. К концам продольной ненапрягаемой арматуры ребристых плит приваривают анкеры из уголков или пластин для закрепления стержней на опоре.
Сплошные плиты из тяжелого и легкого бетонов армируют продольной напрягаемой арматурой и сварными сетками. Монтажные петли закладывают по четырем углам плит. В местах установки петель сплошные панели армируют дополнительными верхними сетками.
Пример армирования ребристой панели перекрытия промышленного здания приведен на рис. 7.7. Номинальная ширина этой панели считается равной 1,5 м. Применяют такие плиты также шириной 3 м.
Рис. 7.7. Армирование ребристой плиты перекрытия
Монтажные соединения панелей всех типов выполняют сваркой стальных закладных деталей и заполнением бетоном швов между плитами. В продольных боковых гранях плит предусматривают впадины, предназначенные для образования прерывистых шпонок, обеспечивающих совместную работу плит на сдвиг в вертикальном и горизонтальном направлениях (рис. 7.8а). При таком соединений сборных элементов перекрытия представляют собой жесткие горизонтальные диафрагмы.
Если временные нагрузки на перекрытиях больше 10 Н/м2, то ребристые плиты при замоноличивании швов целесообразно превращать в неразрезные. С этой целью швы между ребристыми плитами на опорах армируют сварными седловидными каркасами, пересекающими ригель (рис. 7.8б). На нагрузки, действующие после замоноличнвания, такие плиты рассчитывают как неразрезные.
Рис. 7.8. Монтажные соединения плит
Проектирование ригеля
Ригель многопролетного перекрытия представляет собой элемент рамной конструкции. Типы опирания перекрытий на ригели представлены на рис. 7.9. При свободном опирании концов ригеля на наружные стены и равных пролетах ригель можно рассчитывать как неразрезную балку. При этом возможен учет образования пластических шарниров, приводящих к перераспределению и выравниванию изгибающих моментов между отдельными сечениями.
Рис. 7.8. Типы ригелей перекрытий промышленного (а) и гражданского (б) зданий
Сущность расчета статически неопределимых железобетонных конструкций с учетом перераспределения усилий. При некотором значении нагрузки напряжения в растянутой арматуре из мягкой стали достигают предела текучести. С развитием в арматуре пластических деформаций (текучести) в железобетонной конструкции возникает участок больших местных деформаций, называемый пластическим шарниром (рис. 7.9).
Рис. 7.9. Схема образования пластического шарнира в железобетонных конструкциях | Рис.7.10. Эпюры перераспределения изгибающих моментов в статически неопределимой балке |
В статически неопределимой конструкции после появления пластического шарнира при дальнейшем увеличении нагрузки происходит перераспределение изгибающих моментов между отдельными сечениями. При этом деформации в пластическом шарнире нарастают, но значение изгибающего момента остается прежним:
(7.6)
В предельном равновесии — непосредственно перед разрушением— изгибающие моменты балки можно найти статическим или кинетическим способом.
Статический способ. Запишем значение пролетного момента:
(7.7)
Отсюда уравнение равновесия
(7.8)
где — момент статически определимой свободно лежащей балки.
Из этого уравнения следует, что сумма пролетного момента в сечении и долей опорных моментов, соответствующих этому сечению, равна моменту простой балки М0, Кроме того, из уравнения вытекает, что несущая способность статически неопределимой конструкции не зависит от соотношения значений опорных и пролетного моментов и не зависит от последовательности образования пластических шарниров.
Последовательность эта может быть назначена произвольно, необходимо лишь соблюдать уравнение равновесия. Однако изменение соотношения моментов в сечениях меняет значение нагрузки, вызывающей образование первого и последнего пластических шарниров, а также меняет ширину раскрытия трещин в первом пластическом шарнире.
Кинематический способ. Балка в предельном равновесии рассматривается как система жестких звеньев, соединенных друг с другом в местах излома пластическими шарнирами (рис. 7.10). Если прогиб балки под силой F равен f, то углы поворота звеньев
; (7.9)
. (7.10)
Виртуальная работа внутренних усилий —изгибающих моментов в пластических шарнирах
(7.11)
а с учетом полученных выше значений
(7.12)
Уравнение виртуальных работ:
(7.13)
или
(7.14)
Откуда расчетная предельная сила:
(7.15)
Расчет и конструирование статически неопределимых железобетонных конструкций по выравненным моментам позволяет облегчить армирование сечений» что особенно важно для монтажных стыков на опорах сборных конструкций; позволяет стандартизировать и осуществить в необходимых случаях одинаковое армирование сварными сетками и каркасами там, где при расчете по упругой схеме возникают различные по значению изгибающие моменты. При временных нагрузках расчет по выравненным моментам по сравнению с расчетом по упругой схеме может давать 20—30% экономии стали в арматуре.
Величина перераспределенного момента не оговаривается, но должен производится расчет по предельным состояниям второй группы. Практически ограничение раскрытия трещин в первых пластических шарнирах достигается ограничением выравненного момента с тем, чтобы он не слишком резко отличался от момента в упругой схеме и приблизительно составлял не менее 70 %.
Чтобы обеспечить условия, отвечающие предпосылке метода предельного равновесия, следует соблюдать конструктивные требования:
1) конструкция должна быть запроектирована так чтобы причиной ее разрушения не могли быть срез сжатой зоны или раздавливания бетона от главных сжимающих напряжений;
2) армирование сечений, в которых намечено образование пластических шарниров, следует ограничивать так чтобы относительная высота сжатой зоны x£0,35;
3) следует применять арматурные стали с площадкой текучести или сварные сетки из обыкновенной арматурной проволоки.
Расчетный пролет ригеля принимают равным расстоянию между осями колонн; в первом пролете при опирании на стену расчетный пролет считается от оси опоры на стене до оси колонны. Нагрузка на ригель от панелей может быть равномерно распределенной (при пустотных или сплошных панелях) или сосредоточенной (при ребристых панелях). Если число сосредоточенных сил, действующих в пролете ригеля, более четырех, то их приводят к эквивалентной равномерно распределенной нагрузке. Для предварительного определения собственного веса ригеля размеры его сечения принимают:
. (7.16)
При расположении временной нагрузки через один пролет получают максимальные моменты в загружаемых пролетах; при расположении временной нагрузки в двух смежных пролетах и далее через один пролет получают максимальные по абсолютному значению моменты на опоре (рис. 7.11).
Рис.7.11. Схемы загружения неразрезной балки
В неразрезном ригеле целесообразно ослабить армирование опорных сечений и упростить монтажные стыки. Поэтому с целью перераспределения моментов в ригеле к эпюре моментов от постоянных нагрузок и отдельных схем невыгодно расположенных временных нагрузок прибавляют добавочные треугольные эпюры с произвольными по знаку и значению над опорными ординатами (рис. 7.12). При этом ординаты выровненной эпюры моментов в расчетных сечениях должны составлять не менее 70 %, вычисленных по упругой схеме. На основе отдельных загружений строят огибающие эпюры М и Q . Возможен также упрощенный способ расчета неразрезного ригеля но выровненным моментам, состоящий в том, что в качестве расчетной выровненной эпюры моментов принимают эпюру моментов упругой неразрезной балки, полученную для максимальных пролетных моментов (при расположении временной нагрузки через один пролет).
а – добавочные эпюры моментов; б – к определению эпюры М от равномерно распределенной нагрузки; в – то же, от сосредоточенной нагрузки; г – к построению эпюры моментов от равномерно распределенной нагрузки; д – к определению расчетного момента ригеля по грани колонны
Рис.7.12. К расчету неразрезного ригеля
Расчетным па опоре будет сечение ригеля по грани колонны. В этом сечении изгибающий момент:
(7.17)
Момент имеет большее (по абсолютной величине) значение со стороны пролета, загруженного только постоянной нагрузкой; поэтому в формулу следует подставлять значение поперечной силы Q , соответствующее загружению этого пролета. По моменту уточняют размер поперечного сечения ригели и по значению x»0,35 принимают:
(7.18)
Сечение продольной арматуры ригеля подбирают по М в четырех нормальных сечениях: в первом и среднем пролетах, на первой промежуточной опоре и па средней опоре. Расчет поперечной арматуры по Q ведут для трех наклонных сечений: у первой промежуточной опоры слева и справа и у крайней опоры.
Конструирование неразрезного ригеля.
Поперечное сечение ригеля может быть прямоугольным, тавровым с полками вверху, тавровым с полками внизу (рис. 7.13). При опиранин панелей перекрытия па нижние полки ригеля таврового сечения строительная высота перекрытия уменьшается.
Рис.7.13. Схемы поперечного сечения сборного ригеля
Стыки ригелей размещают обычно непосредственно у боковой грани колонны. Действующий в стыках ригелей опорный момент вызывает растяжение верхней части и сжатие нижней (рис. 7.14а). В стыковых соединениях ригель может опираться на железобетонную консоль колонны или же на опорный столик из уголков, выпущенных из колонны (рис. 7.14б). В верхней части стыка выпуски арматуры из колонны и ригеля соединяются вставкой арматуры на ванной сварке. Вставка арматуры повышает точность монтажного соединения в случае нарушения соосности выпусков арматуры. В нижней части стыка монтажными швами соединяются закладные детали колонны и ригеля. После приварки монтажных хомутов полость стыка бетонируется.
Скрытые стыки на консолях (с подрезкой торца ригеля) усложняют конструирование, так как требуют усиления арматуры входящего угла дополнительными каркасами и закладными деталями, повышающими расход стали и трудоемкость изготовления; кроме того, при таком стыке снижается несущая способность и жесткость ригеля на опоре. Эти стыки считаются шарнирными, фигурная же стальная накладка, привариваемая на монтаже, обеспечивает восприятие небольшого изгибающего момента (~50кН*м).
а – усилия, действующие в стыке; б – жесткий стык на консолях; в – жесткий стык бесконсольный; г – скрытый стык на консолях; 1 – арматурные выпуски из ригеля и колонны; 2 – ванная сварка; 3 – вставка арматуры; 4 – поперечные стержни, привариваемые на монтаже; 5 – бетон замоноличивания; 6 – усиленный арматурный выпуск из ригеля; 7 – опорный столик из уголков с отверстием для удобства бетонирования; 8 – стальные закладные детали; 9 – призматические углубления для образования бетонных шпонок; 10 – фигурная деталь «рыбка», привариваемая на монтаже
Рис.7.14. Конструкции стыков сборного ригеля с колонной
В бесконсольных стыках (см. рис. 7.14,е), как показали исследования, поперечная сила воспринимается бетоном замоноличивания полости и бетонными шпонками, образующимися в призматических углублениях на боковой поверхности колонны и в торце сборного ригеля. Специальными исследованиями установлено, что этот стык равнопрочен с консольным стыком, но в то же время по расходу материалов и трудоемкости он экономичнее.
Размеры опорной консоли (рис. 7.15) определяют в зависимости от опорного давления ригеля Q; при этом считается, что ригель оперт на расположенную у свободного края консоли площадку длиной
(7. 19)
где — ширина ригеля.
Рис.7.15. Армирование консоли колонны
Наименьший вылет консоли с учетом зазора с между торцом ригеля и гранью колонны . Обычно принимают l1=200...300 мм. При этом расстояние от грани колонны до силы Q
(7.18)
У коротких консолей ( ) угол сжатой грани с горизонталью не должен превышать 45°. Высота консоли в сечении у грани колонны , у свободного края .
Площадь сечения продольной арматуры консоли подбирают по изгибающему моменту у грани колонны, увеличенному на 25 %:
(7.19)
Короткие консоли высотой сечения армируют горизонтальными хомутами и отогнутыми стержнями. Шаг хомутов должен быть не более 150 мм и не более h /4, диаметр отогнутых стержней - не более 25 мм и не более 1/15 длины отгиба.
Ригель армируют обычно двумя плоскими сварными каркасами (рис. 7.16). При значительных нагрузках возможен третий каркас в средней части пролета. Площадь растянутых стержней каркасов и их число устанавливают при подборе сечений по изгибающим моментам в расчетных сечениях на опоре и в пролете. По мере удаления от этих сечений ординаты огибающей эпюры М уменьшаются, следовательно, может быть уменьшена и площадь сечения арматуры.
Рис. 7.16. Армирование ригеля и эпюра арматуры
Надпись на чертеже – каркас К1, каркас К2
В целях экономии арматурной стали часть продольных стержней обрывают в соответствии с изменением огибающей эпюры моментов. Сечение ригеля, в котором отдельный растянутый стержень по расчету уже не нужен, называют местом его теоретического обрыва. Обрываемые стержни заводят за место теоретического обрыва на длину заделки 1ап.
Для проверки экономичности армирования ригеля и прочности всех его сечений строят эпюру арматуры (эпюру материалов). Ординаты эпюры вычисляют как момент внутренних сил в рассматриваемом сечении ригеля.
Эпюра арматуры против мест теоретического обрыва стержней имеет ступенчатое очертание с вертикальными уступами. Там, где эпюра арматуры значительно отходит от эпюры М, избыточный запас прочности (избыток растянутой арматуры); в местах, где ступенчатая линия эпюры арматуры пересекает эпюру М, прочность сечения недостаточна.
Дата: 2018-12-21, просмотров: 297.