Цитоплазматические включения
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Цитоплазма представляет собой внутреннее содержимое клетки. В цитоплазме различают:

© цитозоль — густую гомогенную часть, содержащую растворимые компоненты РНК, белки, вещества субстрата и продукты метаболизма;

© структурные элементы: рибосомы, внутрицитоплазматические включения и нуклеоид.

Рибосомы

Рибосомы свободно лежат в цитоплазме и не связаны с мембранами (как у эукариот). Для бактерий характерны 70S-рибосомы, образованные двумя субъединицами: 30S и 50S. Рибосомы бактериальных клеток собраны в полисомы, образованные десятками рибосом.

Цитоплазматические включения

Бактериальные клетки могут иметь разнообразные цитоплазматические включения — газовые вакуоли, пузырьки, содержащие бактериохлорофилл, полисахариды, отложения серы и другие.

Нуклеоид

Бактерии не имеют структурно оформленного ядра. Генетический аппарат бактерий называют нуклеоидом. Он представляет собой молекулу ДНК, сосредоточенную в ограниченном пространстве цитоплазмы.

Молекула ДНК имеет типичное строение. Она состоит из двух полинуклеотидных цепей, образующих двойную спираль. В отличие от эукариот, ДНК имеет кольцевую структуру, а не линейную. Молекулу ДНК бактерий отождествляют с одной хромосомой эукариот. Но если у эукариот в хромосомах ДНК связана с белками, то у бактерий ДНК комплексов с белками не образует.

ДНК бактерий закреплена на цитоплазматической мембране в области мезосомы.

Клетки многих бактерий имеют нехромосомные генетические элементы — плазмиды. Они представляют собой небольшие кольцевые молекулы ДНК, способные реплицироваться независимо от хромосомной ДНК. Среди них различают F-фактор — плазмиду, контролирующую половой процесс.

Жгутики

Среди бактерий имеется много подвижных форм. Основную роль в передвижении играют жгутики.

Жгутики бактерий только внешне похожи на жгутики эукариот, строение же их иное. Они имеют меньший диаметр и не окружены цитоплазматической мембраной. Нить жгутика состоит из 3-11 винтообразно скрученных фибрилл, образованных белком флагеллином. У основания располагается крюк и парные диски, соединяющие нить с цитоплазматической мембраной и клеточной стенкой. Движутся жгутики, вращаясь в мембране. Жгутики вызывают вращательное движение клеток бактерий по часовой стрелке, и они как бы ввинчиваются в среду. Жгутик может менять направление движения. При этом бактерия останавливается и начинает кувыркаться. Число и расположение жгутиков на поверхности клетки может быть различно.

Фимбрии

Фимбрии — это тонкие нитевидные структуры на поверхности бактериальных клеток, представляющие собой короткие прямые полые цилиндры, образованные белком пилином.

Благодаря фимбриям, бактерии могут прикрепляться к субстрату или сцепляться друг с другом. Особые фимбрии — половые фимбрии, или F-пили — обеспечивают обмен генетического материала между клетками. 

Эндоспоры

При наступлении неблагоприятных условий, у некоторых бактерий происходит образование эндоспор (рис. 93). При этом клетка обезвоживается, нуклеоид сосредотачивается в спо-

Рис. 93. Почти зрелая эндоспора в бактериальной клетке.
рогенной зоне, цитоплазматическая мембрана образует впячивание, отделяющее спорогенную зону, а затем полностью окружает ее, отделяя от остального содержимого клетки. Образуются защитные оболочки, предохраняющие споры бактерий от действия неблагоприятных условий (споры многих бактерий выдерживают нагревание

до 130˚С, сохраняют жизнеспособность десятки лет). При наступлении благоприятных условий спора прорастает, и образуется вегетативная клетка.

Физиология бактерий

Питание бактерий

Вместе с пищей бактерии, как и другие организмы, получают энергию для процессов жизнедеятельности и строительный материал для синтеза клеточных структур. Среди бактерий различают:

© Гетеротрофов, потребляющих готовое органическое вещество. Они могут быть:

¨ сапротрофами, то есть питатьтся мертвым органическом веществом;

¨ паразитами, то есть потреблять органическое вещество живых растений и животных.

© Автотрофов, способных синтезировать органические вещества из неорганических. Среди них различают:

¨  фотосинтетиков, осуществляющих процессы синтеза за счет энергии солнечного света с помощью бактериохлорофилла;

¨  хемосинтетиков, синтезирующих органические вещества за счет химической энергии окисления серы, сероводорода, аммиака и т.д.

Среди прокариот есть группа микроорганизмов, способных, в отличие от эукариот, в процессе катаболизма осуществлять окисление неорганических веществ. К ним относятся нитрифицирующие бактерии, железобактерии, водородные бактерии и т.д.

Фотосинтез

 Небольшая группа автотрофных бактерий способна осуществлять фотосинтетическое фосфорилирование. К ним относятся цианобактерии, зеленые и серные пурпурные бактерии. Фотосинтез цианобактерий сходен с фотосинтезом растений и сопровождается выделением кислорода. Зеленые и пурпурные бактерии в качестве донора электронов используют сероводород, серу, сульфат, молекулярный водород и т.д., но не воду. Поэтому в данном случае молекулярного кислорода не образуется.

Размножение бактерий

Бактерии способны к интенсивному размножению. Некоторые бактерии при благоприятных условиях способны делиться каждые 20 минут.

Бесполое размножение

Бесполое размножение является основным способом размножения бактерий. Оно может осуществляться путем бинарного деления и почкования.

Бинарное деление

Большинство бактерий размножается путем бинарного равновеликого поперечного деления клеток. При этом образуются две одинаковые дочерние клетки.

Перед делением происходит репликация ДНК.

Деление может происходить в одной или нескольких плоскостях. Если после деления дочерние клетки не расходятся, то в первом случае происходит образование цепочек разной длины, а во втором — групп клеток разнообразной формы.

Почкование

Некоторые бактерии размножаются путем почкования. При этом на одном из полюсов материнской клетки образуется короткий вырост — гифа, на конце которого формируется почка, в нее переходит один из поделившихся нуклеоидов. Почка разрастается, превращаясь в дочернюю клетку, и отделяется от материнской в результате формирования перегородки между почкой и гифой.

Почкование бактерий можно рассматривать как один из вариантов бинарного деления клетки — неравновеликого.

Половой процесс,

 или генетическая рекомбинация

Можно говорить о том, что у бактерий наблюдается и половой процесс. Гаметы у бактерий не образуются, слияния клеток нет, но происходит главнейшее событие полового процесса — обмен генетической информацией. Этот процесс называют генетической рекомбинацией. Часть ДНК (реже вся) клеткой-донором передает клетке-реципиенту и замещает часть ДНК клетки-реципиента. Образовавшуюся ДНК называют рекомбинантной. Она содержит гены обеих родительских клеток.

Различают три способа передачи генетической информации:

© конъюгация;

©

  Рис. 94. Конъюгация у бактерий.
трансдукция.

© трансформация;

Конъюгация

Конъюгация — это прямая передача участка ДНК от одной клетки другой во время непосредственного контакта клеток друг с другом (рис. 94). Передача генетической информации возможна благодаря образованию клеткой-донором особых структур, называемых F-пилями, или половыми фимбриями. Их образование контролируется особой плазмидой — F-фактором (поло-

вым фактором). Плазмида кодирует специфические белки фимбрий. F-пили образуются очень быстро, в течение 4-5 минут. Конец половой фимбрии клетки-донора прикрепляется к белку наружной мембраны клетки-реципиента и через канал F-пили ДНК клетки-донора переходит в клетку-реципиента. После завершения конъюгации половые пили быстро сбрасываются клеткой.

Во время конъюгации ДНК передается только в одном направлении (от донора к реципиенту), обратной передачи нет.

Трансдукция

Трансдукция — это перенос фрагмента ДНК от одной бактерии к другой с помощью бактериофага.

После заражения бактерии ДНК бактериофага встраивается в ДНК бактерии и реплицируется вместе с ней. При образовании новых вирусных частиц ДНК фага высвобождается. При этом она может захватить с собой часть генетического материала бактерии. Во время заражения новых клеток таким вирусом в ДНК бактерии встраивается не только вирусная ДНК, но и часть генетического материала другой бактериальной клетки.

Трансформация

Трансформация — это передача генетической информации без непосредственного контакта клеток. Клетка-реципиент активно поглощает генетическую информацию погибших бактерий.

Значение бактерий

Бактерии играют огромное значение и в биосфере, и в жизни человека. Бактерии принимают участие во многих биологических процессах, особенно в круговороте веществ в природе. Значение для биосферы:

© Гнилостные бактерии разрушают азотсодержащие органические соединения неживых организмов, превращая их в перегной.

© Минерализующие бактерии разлагают сложные органические соединения перегноя до простых неорганических веществ, делая их доступными для растений.

© Многие бактерии могут фиксировать атмосферный азот. Причем, азотобактер, свободноживущий в почве, фиксирует азот независимо от растений, а клубеньковые бактерии проявляют свою активность только в симбиозе с корнями высших растений (преимущественно бобовых), благодаря этим бактериям почва обогащается азотом и повышается урожайность растений.

© Симбиотические бактерии кишечника животных (прежде всего, травоядных) и человека обеспечивают усвоение клетчатки.

© Бактерии являются не только редуцентами, но и продуцентами (создателями) органического вещества, которое может быть использовано другими организмами. Соединения, образующиеся в результате деятельности бактерий одного типа, могут служить источником энергии для бактерий другого типа.

© Помимо углекислого газа, при разложении органического вещества в атмосферу попадают и другие газы: H2, H2S, CH2 и др. Таким образом, бактерии регулируют газовый состав атмосферы.

© Существенную роль играют бактерии и в процессах почвообразования (разрушение минералов почвообразующих пород, образование гумуса).

Некоторые вещества, образующиеся в процессе жизнедеятельности бактерий, важны и для человека. Значение их в следующем:

© деятельность бактерий используется для получения молочнокислых продуктов, для квашения капусты, силосования кормов;

© для получения органических кислот, спиртов, ацетона, ферментативных препаратов;

© в настоящее время бактерии активно используются в качестве продуцентов многих биологически активных веществ (антибиотиков, аминокислот, витаминов и др.), используемых в медицине, ветеринарии и животноводстве;

© благодаря методам генетической инженерии, с помощью бактерий получают такие необходимые вещества, как человеческий инсулин и интерферон;

© без участия бактерий невозможны процессы, происходящие при сушке табачных листьев, приготовлении кожи для дубления, мацерации волокон льна и пеньки;

© человек использует бактерии и для очистки сточных вод.

Отрицательную роль играют патогенные бактерии, вызывающие заболевания растений, животных и человека.

Многие бактерии вызывают порчу продуктов, выделяя при этом токсичные вещества.


 

Основные вопросы для повторения


Ткани

1. Что такое ткань?

2. Виды образовательных тканей.

3. Виды основных тканей.

4. Виды проводящих тканей.

5. Виды механических тканей.

6. Виды покровных тканей.

7. Виды выделительных тканей.

8. По каким тканям проводится вода и соли?

9. По каким тканям проводятся органические вещества?

Корень

1. Что такое корень?

2. Чем отличаются корневые системы двудольных и однодольных растений?

3. Зоны корня.

4. Какие корни называются главными, придаточными, боковыми?

5. Три слоя первичной коры корня?

6. Ткани осевого цилиндра корня.

7. По каким путям вода и соли перемещаются по коре корня в осевой цилиндр?

8. Основной двигатель водного тока по стеблю и листьям?

Побег

1. Что такое побег?

2. Чем образована вегетативная почка?

3. Чем образована генеративная почка?

4. Виды роста побега в длину.

5. Типы ветвления побегов?

6. Чем представлена флоэма и ксилема стебля покрытосеменных?

7. Надземные видоизменения побегов.

8. Подземные видоизменения побегов.

9. Способы вегетативного размножения побегами?

10. Способы вегетативного размножения корнями и листьями.

Лист

1. Что такое лист?

2. Расположение листьев.

3. Два вида хлорофиллоносной паренхимы мезофилла?

4. Что входит в состав жилки?

5. За счет чего повышается осмотическое давление в замыкающих клетках устьиц?

6. Что происходит в световую и темновую фазы фотосинтеза?

7. Пять видов жилкования листьев.

8. Виды сложных листьев.

9. Основные функции листа.

Цветы и соцветия

1. Приведите по два примера однодомных и двудомных растений.

2. Чем представлены андроцей? Гинецей?

3. Какие структуры в различают в семязачатке?

4. Где расположены микроспорангии, сколько их?

5. Чем представлены мегаспорангии цветковых?

6. Чем представлен мужской гаметофит? Женский гаметофит?

7. Что образуется из оплодотворенной яйцеклетки? Центральной клетки? Интегументов? Стенок завязи?

8. Запишите названия семи видов простых соцветий, трех видов сложных соцветий.

9. Что характерно для ветроопыляемых растений?

Плоды и семена

1. Что такое семя?

2. Из каких частей состоит семя фасоли? Зерновка пшеницы?

3. Отличия проростков двудольных и однодольных.

4. Перечислите условия прорастания семян.

5. Сухие и сочные односемянные плоды.

6. Из каких частей состоит зародыш семени?.

7. Состав семян.

8. Сухие и сочные многосемянные плоды.

9. 4 вида ложных плодов.

Классификация цветковых

1. Признаки двудольных растений?

2. Назовите признаки растений семейства Крестоцветные?

3. Назовите признаки растений семейства Розоцветные?

4. Назовите признаки растений семейства Пасленовые?

5. Назовите признаки растений семейства Бобовые?

6. Назовите признаки растений семейства Сложноцветные?

7. Назовите признаки растений семейства Лилейные?

8. Назовите признаки растений семейства Злаки?

Грибы

1. К какому классу относится мукор? Какие споры у мукора и где образуются?

2. К какому классу относятся пеницилл? Какие споры и где у него образуются?

3. К какому классу относятся шляпочные грибы? Какие споры и где у них образуются?

4. Как называется часть корня растений, оплетенная грибницей?

5. Какой мицелий характерен для мукора?

6. Какой мицелий характерен для шляпочных грибов?

7. Какие грибы-паразиты вам известны?

Водоросли

1. Какие растения относятся к низшим растениям?

2. С помощью каких структур происходит бесполое размножение хламидомонады?

3. Как происходит бесполое размножение хлореллы?

4. Как называется половое размножение улотрикса?

5. Как называется бесполое размножение спирогиры?

6. Как называется половое размножение спирогиры?

Лишайники

1. Назовите мико- и фикобионты лишайников.

2. Какие морфологические типы слоевищ у лишайников?

3. Способы бесполого размножения лишайников.

4. Какие четыре слоя различают в гетеромерном лишайнике?

Моховидные

1. Какие растения относятся к высшим споровым растениям?

2. Чем представлен гаметофит и спорофит у кукушкина льна?

3. Какие диплоидные структуры у кукушкина льна известны?

4. Что развивается из споры мха?

5. Однодомный или двудомный гаметофит у кукушкина льна?

6. Где образуются архегонии и антеридии у мхов?

Папоротникообразные

1. Чем представлены гаметофит и спорофит папоротника?

2. Как называются листья папоротника?

3. В каких структурах развиваются споры папоротника?

4. Однодомный или двудомный заросток у папоротника?

5. Можно ли назвать папоротники равноспоровыми растениями?

Голосеменные

1. Какие растения относятся к высшим семенным растениям?

2. Чем представлен спорофит голосеменных?

3. Что характерно для ксилемы голосеменных?

4. Чем представлены микроспорангии голосеменных?

5. Чем представлены мегаспорангии голосеменных?

6. Чем представлен мужской гаметофит голосеменных?

7. Чем представлен женский гаметофит голосеменных?

8. Какой эндосперм у голосеменных?


 

 

Раздел 4. Царство Животные (Zoa)

Царство Животные делят на подцарство Простейшие (Одноклеточные) и подцарство Многоклеточные. Основой строения всех животных является клетка, состоящая из оболочки, цитоплазмы и ядра. Жидкая часть цитоплазмы, гиалоплазма, содержит органоиды, выполняющие определенные функции (митохондрии, рибосомы, эндоплазматическую сеть, комплекс Гольджи, центриоли и др.). У одноклеточных животных клетка является целым организмом, у многоклеточных происходит специализация клеток, появляются ткани, органы, системы органов.

Систематика животных является предметом дискуссий. В последнее время животных подцарства Простейшие разделяют на 7 типов, подцарства Многоклеточные — на 20 типов. В отличие от растений большинство животных активно передвигается, большинство многоклеточных животных имеют нервную систему.

Питание. Для животных характерен голозойный и гетеротрофный тип питания, то есть использование готовых органических веществ, которые захватываются внутрь тела, а не поглощаются осмотическим путем. Но среди одноклеточных животных есть организмы со смешанным, миксотрофным типом питания: на свету они способны с помощью фотосинтеза образовывать органические вещества, используя углерод неорганических соединений (автотрофное питание), могут питаться и готовыми органическими веществами.

Дыхание. Подавляющее большинство животных — аэробные организмы, которым необходим кислород для процессов окисления, но есть организмы, которые получают энергию путем брожения, кислород им не нужен, это анаэробные животные.

Выделение. В результате жизнедеятельности в организмах образуются вещества, для организма ненужные. Выведение таких веществ происходит с помощью многих систем органов — дыхательной, пищеварительной, через покровы, но, кроме того, формируется специальная, выделительная система, которая отвечает за выведение продуктов метаболизма (обмена веществ).

Размножение. У животных существует два типа размножения — половое и бесполое. При различных формах бесполого размножения происходит быстрое увеличение численности популяции, но дочерние особи генетически не отличаются (или редко отличаются) от материнского организма.

При половом размножении каждый дочерний организм имеет уникальный генотип, попадает под контроль естественного отбора, при этом выживают особи с наиболее удачными генотипами для конкретных условий существования. Это помогает приспособиться к изменяющимся условиям среды.

Многообразие. Известно около 1,5 млн. видов животных, изучением многообразия животных занимается наука систематика. Главная задача систематики — распределение видов по таксонам на основе единства происхождения и сходства строения, то есть их классификация.

В основе классификации — вид, родственные виды объединяются в роды, родственные роды — в семейства, семейства в отряды, отряды в классы, классы в типы, типы в подцарства, подцарства в царство.

По задачам исследования в зоологии выделяют следующие разделы: систематика занимается классификацией животных; морфология — описывает внешнее и внутреннее строение; физиология — изучает функции организма, систем органов; эмбриология — изучает эмбриональное развитие; экология — взаимоотношения организмов с факторами среды; палеозоология изучает вымерших животных; этология — поведение.

По объектам исследования: протозоология — изучает простейших; гельминтология — паразитических червей; паразитология — паразитических животных; энтомология — насекомых; малакология — моллюсков; герпетология — пресмыкающихся; орнитология — птиц; териология — млекопитающих.

Филогения. Первые живые организмы появились на Земле 3,5 — 4 млрд. лет назад. Эукариоты — около 1500 млн. лет назад.


Основные этапы эволюции животных можно представить следующим образом (рис. 95): первыми были простейшие, затем незеленые колониальные жгутиконосцы дали начало низшим многоклеточным, к которым относятся пластинчатые и губки. От низших многоклеточных произошли высшие многоклеточные животные с радиальной и двусторонней симметрией. Двухслойное строение тела сменяется трехслойным, паренхима между внутренними органами заменяется первичной, а затем вторичной полостью тела. Вторичнополостные развивались в нескольких направлениях, главные из которых привели к появлению трохофорных животных с первичным ртом и вторичноротых животных — иглокожих, полухордовых и хордовых. Среди хордовых наиболее сложное строение у позвоночных животных, особенно у теплокровных — птиц и млекопитающих.

 

 

  Рис. 95. Основные этапы эволюции животных.

 

 


Глава 15. Подцарство Простейшие (Protozoa)




Общая характеристика

К подцарству Простейшие относятся одноклеточные животные, каждой особи присущи все основные жизненные функции: обмен веществ, раздражимость, движение, размножение. Есть и колониальные виды.

© Среды обитания: морские и пресные водоемы, почва, организмы растений, животных и человека.

© Строение. Клетка простейших является самостоятельным организмом, имеющим одно или несколько ядер. В цитоплазме находятся как органоиды, характерные для клеток многоклеточных животных (митохондрии, рибосомы, комплекс Гольджи и др.), так и органоиды, свойственные только этой группе животных (стигмы, трихоцисты, аксостиль и другие органоиды). Цитоплазма ограничена наружной мембраной, которая может образовывать пелликулу (эластичная и прочная клеточная стенка). Наружный слой цитоплазмы обычно более светлый и плотный — эктоплазма, внутренний — эндоплазма, содержащая различные включения. У некоторых простейших над мембраной имеется раковинка.

© Питание гетеротрофное: у одних пища может поступать в любом месте тела, у других она поступает через специализированные органоиды: клеточный рот, клеточную глотку. Пищеварение внутриклеточное с помощью пищеварительной вакуоли. Непереваренные остатки выделяются или в любом месте тела, или через специальное отверстие — порошицу. Есть миксотрофные организмы, питающиеся на свету с помощью фотосинтеза и имеющие хроматофоры, а при отсутствии света переходящие на гетеротрофный тип питания. Часто эти организмы имеют сократительные вакуоли.

© Дыхание. Подавляющее большинство простейших — аэробные организмы.

© Ответная реакция на воздействия внешней среды — раздражимость — проявляется в виде таксисов — движений всего организма, направленных либо в сторону раздражителя, либо от него. Например, эвглена зеленая проявляет положительный фототаксис — движется в сторону света. При наступлении неблагоприятных условий большинство простейших образуют цисты. Инцистирование — способ переживания неблагоприятных условий.

© Размножение. Бесполое размножение: или митотическое деление вегетативной особи на две дочерние клетки, или множественное деление, при котором образуется несколько дочерних клеток. Существуют половой процесс — конъюгация (у инфузорий) и половое размножение (у инфузорий, вольвокса, малярийного плазмодия).

© Многообразие. Насчитывается от 30 до 70 тысяч видов (по данным разных авторов).

15.2. Тип Корнежгутиковые (Sarcomastigophora)

Одни виды образуют пелликулу, другие секретируют раковинки или скелетные образования; есть организмы, не имеющие постоянной формы тела. Органоиды движения — ложноножки или жгутики, или то и другое одновременно. Ядер от одного до нескольких. Некоторые виды способны к фотосинтезу. Размножение бесполое, у некоторых — половое (фораминиферы, вольвокс). Есть колониальные формы (вольвокс, гониум, эвдорина). Среди представителей типа имеются паразиты животных, растений и человека.

15.2.1. Класс Корненожки, или Саркодовые (Sarcodina)

Форма тела непостоянная, некоторые виды образуют раковинки. Органоиды движения и захвата пищи — ложноножки. У большинства видов одно ядро. В цитоплазме различают два слоя — эктоплазму (светлый наружный слой) и эндоплазму (внутренний зернистый слой). Захват пищи происходит с помощью ложноножек. Выделение непереваренных остатков происходит в любом участке клетки. При наступлении неблагоприятных условий способны к инцистированию. Большинство видов размножается бесполым способом (митотическое деление клетки).

Представители — амеба обыкновенная, амеба дизентерийная, раковинные амебы. Среди животных этого класса имеются виды, паразитирующие в организме человека и животных.

Амеба протей (рис. 96) — одна из самых крупных свободноживущих амеб (до 0,5 мм), обитает в пресных водоемах. Имеет длинные ложноножки, одно ядро, оформленного клеточного рта и порошицы нет. Передвигается с помощью движения цитоплазмы в определенном направлении. Происходит образование ложноножек, с их помощью захватывается пища. Этот процесс захвата твердых пищевых частиц называется фагоцитозом. Вокруг захваченной пищевой частицы образуется пищеварительная вакуоль, в которую поступают ферменты.

Кроме пищеварительной вакуоли, образуется сократительная вакуоль, которая удаляет излишки воды из организма амебы. Осмотическое давление внутри амебы выше, чем осмотическое давление пресной воды, поэтому вода постоянно поступает в амебу. Для удаления избытка воды и

Рис. 96. Строение амебы:   1 — ложноножка; 2 — эктоплазма; 3 — эндоплазма; 4 — ядро; 5 — фагоцитирование пищи; 6 — сократительная вакуоль; 7 — пищеварительная вакуоль.
существует сократительная вакуоль. У паразитических и морских видов, среда обитания которых имеет осмотическое давление такое же, как и внутри простейших, сократительные вакуоли отсутствуют.

Амеба размножается путем митотического деления пополам. При неблагоприятных условиях она способна к инцистированию, цисты вместе с пылью переносятся на большие расстояния.

Ряд амеб обитает в кишечнике человека, например кишечная амеба и дизентерийная амеба. Дизентерийная амеба может жить в кишечнике, не причиняя вреда хозяину, такое явление называется носительством. Но иногда дизентерийные амебы проникают под

слизистую кишечника, вызывают его изъязвление. В результате развивается амебная дизентерия — расстройство кишечника с кровавыми выделениями, кишечные боли (колиты). Распространение дизентерийных амеб происходит с помощью цист, переносчиками могут быть мухи.

15.2.2. Класс Жгутиконосцы (Mastigophora)

Форма тела постоянная, имеется пелликула. Ядро обычно одно, но есть двуядерные виды, например лямблия, и многоядерные, например опалина. Органоиды движения — один или несколько жгутиков. Представителей делят на два подкласса: Растительные жгутиконосцы и Животные жгутиконосцы.

Растительные жгутиконосцы способны к смешанному (миксотрофному) питанию. К ним относится эвглена зеленая, вольвокс. Имеют одно ядро. Бесполое размножение происходит с помощью продольного мито- тического деления клетки, половое размножение осуществляется с образованием и слиянием гамет (у вольвокса).

Эвглена зеленая обитает в пресных водоемах. Имеет один жгутик, одно ядро, постоянную форму тела вследствие наличия пелликулы (рис. 97). В передней части клетки расположены стигма (органоид световосприятия) и сократительная вакуоль, в цитоплазме — около двадцати хроматофоров. Эвгленам свойствен миксотрофный способ питания. В цитоплазме накапливаются зерна запасных питательных веществ. В передней части тела имеется глотка. Размножение — только бесполое, продольным митотическим делением.

  Рис. 97. Строение эвглены:   1 — пелликула; 2 — запасные питательные вещества; 3 — ядро; 4 — хроматофоры; 5 — сократительная вакуоль; 6 — стигма; 7 — жгутик.
Вольвокс — колония жгутиковых животных, имеющая шаровидную форму. Клетки колонии называются зооидами. Они располагаются по периферии колонии и связаны друг с другом цитоплазматическими мостиками. Центральная часть колонии заполнена студенистым веществом, образующимся в результате ослизнения клеточных стенок. Среди клеток имеется специализация: они могут быть вегетативными и генеративными. Генеративные зооиды связаны с воспроизведением. Весной генеративные зооиды погружаются внутрь колонии и там митотически делятся, образуя дочерние колонии. Затем материнская колония разрушается, а дочерние колонии начинают самостоятельное существование. Осенью из генеративных зооидов образуются макрогаметы и микрогаметы. Происходит копуляция гамет, зигота зимует, делится мейотически, и гаплоидные зооиды образуют новую колонию.

У животных жгутиконосцев питание осуществляется путем захвата твердых частиц. Среди них имеются как сапротрофные, так и паразитические организмы. Сапротрофные организмы — это бесцветные жгутиковые, питающиеся продуктами распада органических веществ. Некоторые свободноживущие жгутиковые простейшие питаются бактериями, одноклеточными водорослями, простейшими.

К паразитическим животным жгутиконосцам относятся, например, лейшмании, трипаносомы.

Эти животные вызывают болезни, которые относятся к категории трансмиссивных. Трансмиссивные болезни — заболевания, возбудитель которых передается через укус кровососущего насекомого или клеща.

Некоторые виды лейшманий вызывают кожный лейшманиоз («пендинскую язву»), переносчиком возбудителей являются москиты, источником инвазии — дикие грызуны или больные люди (рис. 98).

Трипаносомы (рис. 99) вызывают «сонную болезнь», на начальных этапах паразитируют в крови больного, затем переходят в спинномозговую жидкость, вызывают сонливость, затем наступает смерть больного от истощения. Переносчиком возбудителя болезни являются мухи цеце, источником инвазии — копытные животные и больные люди (рис. 100). В настоящее время заболевание лечится.

 

 

   

 


  Рис. 100. Жизненный цикл Trypanosoma rhodesiense.

 

 


15.2.3. Тип Инфузории, или Ресничные (Ciliophora)

  Рис. 101. Строение инфузории туфельки:   1 — цитостом; 2 — клеточная глотка; 3 — пищеварительная вакуоль; 4 — порошица; 5 — большое ядро (вегетативное); 6 — малое ядро (генеративное); 7 — сократительная вакуоль; 8 — приводящие каналы сократительной вакуоли; 9 — реснички; 10 — пищеварительная вакуоль.
К типу относятся более 7 тыс. видов наиболее высокоорганизованных простейших, особенности строения рассмотрим на примере инфузории туфельки (рис. 101). Форма тела постоянная благодаря эластичной и прочной пелликуле. Активно передвигаются с помощью ресничек. Другой важный признак — наличие двух качественно различных ядер: крупного полиплоидного вегетативного ядра — макронуклеуса и мелкого диплоидного генеративного ядра — микронуклеуса. В эктоплазме многих инфузорий находятся особые защитные приспособления — трихоцисты. При раздражении животного они выстреливают длинную упругую нить, парализующую добычу.

Питание. Захват пищи осуществляется с помощью клеточного рта и клеточной глотки, куда пищевые частицы направляются с помощью биения ресничек. Глотка открывается непосредственно в эндоплазму. Непереваренные остатки выбрасываются через порошицу. Дыхание происходит через всю поверхность тела.

Избыток воды удаляется с помощью двух сократительных вакуолей с приводящими канальцами, их содержимое поочередно изливается через выделительные поры. При неблагоприятных условиях способны к инцистированию.

Бесполое размножение — поперечное митотическое деление, чередующееся с половым процессом — конъюгацией и половым размножением. Следует помнить, что половое размножение сопровождается увеличением числа особей.

Конъюгация и половое размножение инфузорий туфелек происходит при неблагоприятных условиях. Две инфузории соединяются друг с другом околоротовыми областями (рис. 102), в этом месте происходит разрушение пелликулы, и образуется

цитоплазматический мостик, соединяющий обе инфузории. Затем макронуклеусы разрушаются, микронуклеусы претерпевают мейотическое деление, образуются четыре гаплоидных ядра. Три ядра разрушаются, четвертое делится митотически. В это время в каждой инфузории по два гаплоидных ядра, женское (стационарное) ядро остается на месте, мужское мигрирует по цитоплазматическому мостику в другую инфузорию. После этого происходит слияние мужских и женских ядер. Конъюгация продолжается несколько часов, затем инфузории расходятся.

В каждом из экс-конъюгантов диплоидное ядро претерпевает ряд митотических делений, происходит деление самих экс-конъюгантов, в результате образуются 8 инфузорий, в каждой из которых один полиплоидный макронуклеус и один диплоидный микронуклеус.

  Рис. 102. Размножение инфузории туфельки:   1 — конъюгация; 2 — разрушение макронуклеусов, мейоз микронуклеусов; 3 — разрушение микронуклеусов; 4 — обмен мужскими ядрами; 5 — слияние мужских и женских ядер; 6 — три митотических деления, образование четырех микронуклеусов и четырех макронуклеусов; 7 — разрушение трех микронуклеусов; 8 — деление каждой инфузории на две особи с двумя макронуклеусами и микронуклеусом; 9 — образование восьми особей.

 

 


Таким образом, в конъюгации принимали участие две особи, размножение закончилось образованием восьми особей.

У человека в толстом кишечнике может паразитировать инфузория балантидий, которая вызывает тяжелое заболевание — балантидиаз. Заболевание проявляется в колитах (болях в кишечнике), кровавом стуле, лихорадочном состоянии. Основным источником заражения являются свиньи, зараженные балантидиями. Заражение происходит на стадии цист.

15.2.4. Тип Споровики (Sporozoa)

К типу относятся исключительно паразитические простейшие. В связи с паразитическим образом жизни происходит упрощение организации (исчезновение органоидов захвата и приема пищи, пищеварительных и сократительных вакуолей). Происходит усложнение жизненного цикла — смена хозяев, чередование бесполого и полового размножения. Представитель типа — малярийный плазмодий.

Малярийный плазмодий вызывает у человека заболевание малярией. Заражение происходит через укус малярийным комаром (рода Anopheles), который содержит возбудителя на стадии спорозоитов (рис. 103).

    Рис. 103. Жизненный цикл малярийного плазмодия:   1 — проникновение спорозоитов в организм человека; 2-4 — шизогония в клетках печени; 5-10 — эритроцитарная шизогония; 11-16 — образование гамонтов; 17-18 гаметы в желудке комара; 19-22 — копуляция гамет, образование оокинеты; 23-25 образование ооцисты и спорогония; 26 — миграция спорозоитов в слюнные железы комара.

 

 


Спорозоиты — тонкие, червеобразные клетки, с током крови попадают в клетки печени, где превращаются в шизонтов, которые размножаются множественным делением — шизогонией. При этом ядро многократно делится, затем из каждой клетки образуется большое количество дочерних клеток. Образовавшиеся мерозоиты выходят из клеток печени и внедряются в эритроциты. Здесь они питаются, затем вновь происходит шизогония. Таким образом, различают две формы шизогонии — в клетках печени и в эритроцитах. В результате эритроцитарной шизогонии образуются 10—20 мерозоитов, которые разрушают эритроцит, выходят в кровь и заражают следующие эритроциты. Цикличность приступов малярии обусловлена цикличностью выходов мерозоитов и продуктов их метаболизма из эритроцитов в плазму крови. После нескольких циклов шизогонии в эритроцитах образуются гамонты, которые в организме комара превратятся в макрогаметы и микрогаметы. Когда гамонты попадают в желудок комара, они превращаются в гаметы, происходит копуляция, слияние гамет. Зигота подвижна и называется оокинета. Оокинета мигрирует через стенку желудка комара и превращается в ооцисту. Ядро ооцисты многократно делится, и ооциста распадается на огромное количество спорозоитов — до 10000. Этот процесс называется спорогония. Спорозоиты мигрируют в слюнные железы комара.

Таким образом, в жизненном цикле малярийного плазмодия человек является промежуточным хозяином (преэритроцитарная шизогония, эритроцитарная шизогония, начало гаметогонии), а малярийный комар — окончательным (завершение гаметогонии, оплодотворение и спорогония).


 

 


 

 







Подцарство Многоклеточные

Глава 16. Тип Кишечнополостные       (Coelenterata)

Дата: 2018-11-18, просмотров: 336.