Энергетическое значение аэробного распада глюкозы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Функции углеводов

В основном углеводы выполняют энергодативную функцию. Главными источниками энергии являются глюкоза и гликоген. Кроме того, из углеводов могут синтезироваться липиды, некоторые аминокислоты, пентозы. Углеводы входят как составная часть в структурно-функциональные компоненты клетки - гликолипиды и гликопротеины.

Метаболизм глюкозы

Расщепление углеводов

Суточная норма углеводов в пище составляет 400-500 г. Основными углеводами пищи являются:

1. крахмал - разветвленный гомополисахарид из глюкозы. Мономеры линейных участков соединены a -1,4-гликозидными связями, а в местах разветвления a -1,6 связями.

2. дисахариды - сахароза (глк-( a -1,2)-фру), лактоза (гал-( b -1,4)-глк), мальтоза (глк-( a -1,4)-глк).

При переваривании углеводов в желудочно-кишечном тракте происходит ферментативный гидролиз гликозидных связей и образование моносахаридов, главным из которых является глюкоза. Гидролиз крахмала начинается в полости рта при участии амилазы слюны, которая частично расщепляет внутренние a -1,4-гликозидные связи, образуя менее крупные, чем крахмал молекулы - декстрины. Далее гидролиз крахмала продолжается в верхнем отделе кишечника под действием панкреатической амилазы, также расщепляющей a -1,4-гликозидные связи. В результате из крахмала образуются дисахаридные остатки мальтозы и изомальтозы (глк-( a -1,6)-глк). Гидролиз всех дисахаридов происходит на поверхности клеток кишечника и катализируется специфическими ферментами: сахаразой, лактазой, мальтазой и изомальтазой. Эти гликозидазы синтезируются в клетках кишечника.

Всасывание моносахаридов из кишечника в кровь осуществляется путем облегченной диффузии. Если концентрация глюкозы в кишечнике невелика, то ее транспорт может происходить за счет градиента концентрации ионов натрия, создаваемого Na+, K+-AТР-азой.

Метаболизм глюкозы

Глюкоза играет главную роль в метаболизме, так как именно она является основным источником энергии. Глюкоза может превращаться практически во все моносахариды, в то же время возможно и обратное превращение. Полное рассмотрение метаболизма глюкозы не входит в нашу задачу, поэтому сосредоточимся на основных путях:

· катаболизм глюкозы – гликолиз;

· синтез глюкозы – глюконеогенез;

· депонирование и распад гликогена;

· синтез пентоз - пентозофосфатные пути.

Транспорт глюкозы в клетки

С кровью воротной вены большая часть глюкозы (около половины) из кишечника поступает в печень, остальная глюкоза через общий кровоток транспортируется в другие ткани. Концентрация глюкозы в крови в норме поддерживается на постоянном уровне и составляет 3,33-5,55 мкмоль/л, что соответствует 80-100 мг в 100 мл крови. Транспорт глюкозы в клетки носит характер облегченной диффузии, но регулируется во многих клетках гормоном поджелудочной железы - инсулином, действие которого приводит к перемещению белков-переносчиков из цитозоля в плазматическую мембрану

Транспорт глюкозы в клетки

 

Затем с помощью этих белков глюкоза транспортируется в клетку по градиенту концентрации. Скорость поступления глюкозы в мозг и печень не зависит от инсулина и определяется только концентрацией ее в крови. Эти ткани называются инсулинонезависимыми.

Катаболизм глюкозы

Гликолиз - это серия реакций, в результате которых глюкоза распадается на две молекулы пирувата (аэробный гликолиз) или две молекулы лактата (анаэробный гликолиз). Все десять реакций гликолиза протекают в цитозоле и характерны для всех органов и тканей. Аэробный распад глюкозы включает реакции аэробного гликолиза и последующее окисление пирувата в реакциях катаболизма.

Схема катаболизма глюкозы

 

Таким образом, аэробный распад глюкозы - это предельное ее окисление до СО2 и Н2О, а анаэробный гликолиз - это специфический путь катаболизма, то есть часть аэробного распада глюкозы. Анаэробный распад включает те же реакции специфического пути распада глюкозы до пирувата, но с последующим превращением пирувата в лактат (то есть термины анаэробный распад и анаэробный гликолиз совпадают). Последовательность реакций гликолиза приведена на рисунке:

Последовательность реакций гликолиза

 

В гликолизе можно выделить три основных этапа. На первом этапе превращениям подвергаются гексозы, на втором - триозы, на третьем - карбоновые кислоты. Характеристика гликолиза:

· большинство реакций обратимо, за исключением трех (реакций 1, 3, 10);

· все метаболиты находятся в фосфорилированной форме;

· источником фосфатной группы в реакциях фосфорилирования являются АТР (реакции 1, 3) или неорганический фосфат (реакция 6);

· регенерация NAD+, являющаяся необходимым условием протекания гликолиза, происходит при аэробном гликолизе посредством дыхательной цепи. В этом случае водород транспортируется в митохондрии с помощью челночного механизма при участии переносчиков. Это происходит потому, что мембрана митоходрий непроницаема для протонов. При анаэробном гликолизе регенерации NAD+ осуществляется независимо от дыхательной цепи. В этом случае акцептором водорода от NADH является пируват, который восстанавливается в лактат;

· образование АТР при гликолизе может идти двумя путями: либо субстратным фосфорилированием, когда для фосфорилирования ADP используется энергия макроэргической связи субстрата (реакции 7, 9), либо путем окислительного фосфорилирования ADP, сопряженного с дыхательной цепью (реакция 6).

Аэробный распад глюкозы

Функции углеводов

В основном углеводы выполняют энергодативную функцию. Главными источниками энергии являются глюкоза и гликоген. Кроме того, из углеводов могут синтезироваться липиды, некоторые аминокислоты, пентозы. Углеводы входят как составная часть в структурно-функциональные компоненты клетки - гликолипиды и гликопротеины.

Метаболизм глюкозы

Расщепление углеводов

Суточная норма углеводов в пище составляет 400-500 г. Основными углеводами пищи являются:

1. крахмал - разветвленный гомополисахарид из глюкозы. Мономеры линейных участков соединены a -1,4-гликозидными связями, а в местах разветвления a -1,6 связями.

2. дисахариды - сахароза (глк-( a -1,2)-фру), лактоза (гал-( b -1,4)-глк), мальтоза (глк-( a -1,4)-глк).

При переваривании углеводов в желудочно-кишечном тракте происходит ферментативный гидролиз гликозидных связей и образование моносахаридов, главным из которых является глюкоза. Гидролиз крахмала начинается в полости рта при участии амилазы слюны, которая частично расщепляет внутренние a -1,4-гликозидные связи, образуя менее крупные, чем крахмал молекулы - декстрины. Далее гидролиз крахмала продолжается в верхнем отделе кишечника под действием панкреатической амилазы, также расщепляющей a -1,4-гликозидные связи. В результате из крахмала образуются дисахаридные остатки мальтозы и изомальтозы (глк-( a -1,6)-глк). Гидролиз всех дисахаридов происходит на поверхности клеток кишечника и катализируется специфическими ферментами: сахаразой, лактазой, мальтазой и изомальтазой. Эти гликозидазы синтезируются в клетках кишечника.

Всасывание моносахаридов из кишечника в кровь осуществляется путем облегченной диффузии. Если концентрация глюкозы в кишечнике невелика, то ее транспорт может происходить за счет градиента концентрации ионов натрия, создаваемого Na+, K+-AТР-азой.

Метаболизм глюкозы

Глюкоза играет главную роль в метаболизме, так как именно она является основным источником энергии. Глюкоза может превращаться практически во все моносахариды, в то же время возможно и обратное превращение. Полное рассмотрение метаболизма глюкозы не входит в нашу задачу, поэтому сосредоточимся на основных путях:

· катаболизм глюкозы – гликолиз;

· синтез глюкозы – глюконеогенез;

· депонирование и распад гликогена;

· синтез пентоз - пентозофосфатные пути.

Транспорт глюкозы в клетки

С кровью воротной вены большая часть глюкозы (около половины) из кишечника поступает в печень, остальная глюкоза через общий кровоток транспортируется в другие ткани. Концентрация глюкозы в крови в норме поддерживается на постоянном уровне и составляет 3,33-5,55 мкмоль/л, что соответствует 80-100 мг в 100 мл крови. Транспорт глюкозы в клетки носит характер облегченной диффузии, но регулируется во многих клетках гормоном поджелудочной железы - инсулином, действие которого приводит к перемещению белков-переносчиков из цитозоля в плазматическую мембрану

Транспорт глюкозы в клетки

 

Затем с помощью этих белков глюкоза транспортируется в клетку по градиенту концентрации. Скорость поступления глюкозы в мозг и печень не зависит от инсулина и определяется только концентрацией ее в крови. Эти ткани называются инсулинонезависимыми.

Катаболизм глюкозы

Гликолиз - это серия реакций, в результате которых глюкоза распадается на две молекулы пирувата (аэробный гликолиз) или две молекулы лактата (анаэробный гликолиз). Все десять реакций гликолиза протекают в цитозоле и характерны для всех органов и тканей. Аэробный распад глюкозы включает реакции аэробного гликолиза и последующее окисление пирувата в реакциях катаболизма.

Схема катаболизма глюкозы

 

Таким образом, аэробный распад глюкозы - это предельное ее окисление до СО2 и Н2О, а анаэробный гликолиз - это специфический путь катаболизма, то есть часть аэробного распада глюкозы. Анаэробный распад включает те же реакции специфического пути распада глюкозы до пирувата, но с последующим превращением пирувата в лактат (то есть термины анаэробный распад и анаэробный гликолиз совпадают). Последовательность реакций гликолиза приведена на рисунке:

Последовательность реакций гликолиза

 

В гликолизе можно выделить три основных этапа. На первом этапе превращениям подвергаются гексозы, на втором - триозы, на третьем - карбоновые кислоты. Характеристика гликолиза:

· большинство реакций обратимо, за исключением трех (реакций 1, 3, 10);

· все метаболиты находятся в фосфорилированной форме;

· источником фосфатной группы в реакциях фосфорилирования являются АТР (реакции 1, 3) или неорганический фосфат (реакция 6);

· регенерация NAD+, являющаяся необходимым условием протекания гликолиза, происходит при аэробном гликолизе посредством дыхательной цепи. В этом случае водород транспортируется в митохондрии с помощью челночного механизма при участии переносчиков. Это происходит потому, что мембрана митоходрий непроницаема для протонов. При анаэробном гликолизе регенерации NAD+ осуществляется независимо от дыхательной цепи. В этом случае акцептором водорода от NADH является пируват, который восстанавливается в лактат;

· образование АТР при гликолизе может идти двумя путями: либо субстратным фосфорилированием, когда для фосфорилирования ADP используется энергия макроэргической связи субстрата (реакции 7, 9), либо путем окислительного фосфорилирования ADP, сопряженного с дыхательной цепью (реакция 6).

Аэробный распад глюкозы

Энергетическое значение аэробного распада глюкозы

В аэробном гликолизе образуется 10 моль АТР на 1 моль глюкозы. Так, в реакциях 7, 10 образуется 4 моль АТР путем субстратного фосфорилирования, а в реакции 6 синтезируется 6 моль АТР (на 2 моль глицероальдегидфосфата) путем окислительного фосфорилирования:

Баланс аэробного гликолиза

Суммарный эффект аэробного гликолиза составляет 8 моль АТР, так как в реакциях 1 и 3 используется 2 моль АТР. Дальнейшее окисление двух моль пируват в общих путях катаболизма сопровождается синтезом 30 моль АТР ( по 15 моль на каждую молекулу пирувата . Следовательно, суммарный энергетический эффект аэробного распада глюкозы до конечных продуктов составляет 38 моль АТР.

Дата: 2018-11-18, просмотров: 471.