РЕГУЛЯТОРЫ ГРОМКОСТИ, БАЛАНСА
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

И РЕЖИМА «ИНТИМ»

 

Регуляторы громкости являются неотъемлемой частью любого звуко­воспроизводящего устройства и предназначены для регулирования уровня зву­чания акустических систем при воспроизведении звуковых сигналов. Для сте­реофонических систем обязательным является также регулятор стереобаланса, который служит для плавного изменения соотношения уровней звучания пра­вого и левого каналов, позволяя перемещать в пространстве стереозону. Не­редко в современных звуковоспроизводящих устройствах также используют режим «Интим» или « — 20 дБ», снижающий уровень сигнала скачком в 10 раз что создает большие эксплуатационные удобства (при разговоре по телефону, контрольном прослушивании, выборе музыкальных программ и т. п.).

Известно, что из-за особенностей органов слуха человека при уменьшении уровня громкости наблюдается ухудшение восприятия низших и высших зву­ковых частот. Поэтому обычно применяют тонкомпенсированные регуляторы громкости, которые одновременно с уменьшением или увеличением громкости изменяют АЧХ усилительного устройства таким образом, чтобы она соответст-; вовала широко известным кривым равной громкости [8]. Стандартизированные кривые равной громкости приводятся в рекомендациях Международной органи­зации стандартизации (ИСО).

Схемные решения регуляторов громкости и баланса базируются на резне-тивных делителях напряжения, в качестве которых используют переменные или I постоянные резисторы. К переменным резисторам предъявляют следующие тре-: бования: близость к нулю минимального регулируемого сопротивления; плавное, (без скачков) изменение сопротивления при перемещении движка резисторов с функциональной зависимостью, подчиняющейся показательному закону (группа В); отсутствие шумов и щелчков; идентичность изменения сопротивлений при их регулировании (для сдвоенных регуляторов в стереофонических системах). Пределы плавного регулирования громкости определяются диапазоном плавно­го изменения сопротивления используемых переменных резисторов. Применяе­мые в УЗЧ резисторы СПЗ-12 имеют диапазон плавного изменения до 60 дБ, СПЗ-12а-1 — до 80 дБ. Однако промышленные потенциометры не всегда удо­влетворяют перечисленным требованиям. Разбаланс сопротивлений сдвоенных переменных резисторов типов СПЗ-23, СПЗ-12, СПЗ-4, наиболее часто использу­емых для тонкомпенсированной регулировки громкости, достигает ±3 дБ, а изменение их сопротивления из-за люфта движка или оси ±6 дБ. Это приводит к разбалансу уровней сигналов в каналах стереоусилителя при регулирований громкости и к рассогласованию АЧХ, особенно заметному на малой и средней громкости.

От указанных недостатков свободен сдвоенный ступенчатый тонкомпенси­рованный регулятор громкости, построенный на дискретных резисторах и мно­гопозиционных переключателях [9]. В последние годы с развитием интеграль­ной технологии и созданием новой элементной базы получают распространение электронные регуляторы громкости и баланса на полевых транзисторах, КМОП коммутаторах, КМОП мультиплексерах, а также специальных микросхе­мах (например, К174УН12).

Кроме общепринятых характеристик для каскада регулирования специфи­ческой является глубина регулирования громкости — отношение номинального выходного напряжения к напряжению на выходе при положении регулятора громкости, соответствующем минимальной громкости в пределах плавной регу­лировки, выраженное в децибелах.

Рассмотрим варианты схем регулировки громкости и баланса с применени­ем различной элементной базы.

Типовой каскад регулирования громкости и баланса на переменных рези­сторах групп В и А. В качестве простейшего регулятора громкости может слу­жить обычный переменный резистор, включенный по схеме делителя напряже­ния. Однако некоторые особенности слухового восприятия звуковых давлений-различных частот требуют усложнения этого каскада в усилителях высокого класса. Чувствительность уха, максимальная на средних частотах, падает нг низших и высших частотах. При увеличении уровня громкости чувствитель­ность уха в области низших частот заметно возрастает. В области высших ча­стот чувствительность также возрастает, но ее рост значительно зависит от ин­дивидуальных особенностей слуха каждого человека (особенно заметна зави­симость восприятия высших частот от возраста).

Иначе говоря, изменение уровня звукового давления вызывает изменение спектра сигнала, воспринимаемого человеком. Поэтому, чтобы субъективное восприятие громкости изменялось во всем спектре частот пропорционально, не­обходимо скорректировать частотную характеристику регулятора громкости (ввести так называемую тонкомпенсацию) таким образом, чтобы с уменьшени­ем уровня звукового давления увеличивался подъем в области низших и выс­ших частот. Кроме того, желательно равномерно изменять относительную гром­кость при линейном перемещении регулирующего узла. Из экспериментов из­вестно [10], что субъективное ощущение приращения громкости зависит от уровня звукового давления. При малых уровнях сигнала одинаковому прираще­нию звукового давления субъективно соответствует большее приращение громко­сти, чем при больших уровнях сигнала. Поэтому для получения равномерной субъективной регулировки громкости требуется нелинейное регулирование зву­кового давления. Этим требованиям отвечают переменные резисторы с показа­тельной зависимостью( группы В), имеющие отводы для тонкомпенсации.

При регулировке стереобаланса, чтобы сохранить постоянство общего зву­кового давления в обоих каналах, ослабление уровня сигнала в одном канале необходимо компенсировать увеличением уровня сигнала в другом. Для этога можно использовать широко распространенные переменные резисторы с линейной зависимостью (группы А). Применение специально разработанных для регулировка стереобаланса потенциометров с зависимостью (группы Е/И) позволяет умень­шить потери сигнала и субъективно более плавно регулировать стереобаланс.

Рис. 39. Принципиальная схема регуляторов громкости и баланса на потенцио­метрах типа В и А

 

На рис. 39 приведена схема регулятора громкости, в которой учтены сде­ланные замечания. Он имеет следующие основные технические характеристики:

 

Номинальное входное напряжение......... 200 мВ

Номинальное выходное напряжение........ 140 мВ

Глубина регулировки громкости......... 40 дБ

Тонкомпенсация (при уровне громкости — 30 дБ) на частоте:

100 Гц................ 6 дБ

10 кГц................ 4 дБ

Регулировка стереобаланса........... ±6 дБ

 

Резистор R 1 и соответствующий ему в другом канале уменьшают взаим­ное влияние каналов в режиме «Моно». Резистор R 2 с зависимостью А обес­печивает регулировку стереобаланса. Последовательно включенный резистор R 3 позволяет уменьшить потери сигнала до 3 дБ (при его отсутствии потери возрастают до б дБ). Кнопкой SB 2 включают резистивный делитель R 4, R 5, уменьшающий сигнал в 10 раз. Громкость регулируют переменным резистором R 7, к отводу которого (при нажатой кнопке SB 3) подключается цепь тонком-пенсации.

Узел регулировок собран на выводах переменных резисторов и переключа­телей П2К. Монтаж выполнен экранированным проводом МГШВЭ-0,2. Регу­лятор стереобаланса — СПЗ-12г с зависимостью А; регулятор громкости — СПЗ-12д с зависимостью В; остальные резисторы МЛТ-0,25; конденсаторы КМ-5, КМ-6, переключатели — П2К с независимой фиксацией.

Налаживание узла в основном состоит в проверке правильности монтажа.

Регулятор громкости и баланса на переключателях галетного типа. Как уже указывалось, разбаланс сопротивлений сдвоенных переменных резисторов достигает ±6 дБ, что вызывает разбаланс уровней сигналов в каналах и рас­согласование АЧХ при введении тонкомпенсации. Коэффициент усиления кана­лов можно выравнить регулятором стереобаланса, но сбалансировать АЧХ с помощью обычных органов управления не удается. Кроме того, нередко быва­ет довольно сложно найти сдвоенный резистор с необходимым номиналом и законом регулирования громкости. От указанных недостатков свободен регу­лятор громкости на базе галетного переключателя, позволяющий создать необходимый закон регулирования и при попарном подборе резисторов делителя иметь незначительный разбаланс каналов.

Как известно, использование для регулировки стереобаланса переменных резисторов с линейной зависимостью вызывает значительное ослабление сигна­ла (около 6 дБ). Применение специальных резисторов с зависимостью Е/И не всегда возможно из-за отсутствия необходимых номиналов. Построение регуля­тора баланса на базе галетного переключателя также позволяет легко получить «переменный резистор» нужного номинала с требуемым законом регулиро­вания.

С учетом сказанного, разработан регулятор громкости и баланса с при­менением переключателей галетного типа, схема одного канала которого пока­зана на рис. 40. Он имеет следующие основные технические характеристики:

 

Номинальное входное напряжение......... 200 мВ

Номинальное выходное напряжение........ 200 мВ

Глубина регулировки громкости . . . . . . . . , 60 дБ

Тонкомпенсация (при уровне громкости — 40 дБ) на частоте 100 Гц................ ±8 дБ

Регулировка стереобаланса........... ±8 дБ

 

Регулятор громкости состоит из делителя на резисторах RlR 22 и га­летного переключателя SA 1 на 23 положения. Расчет такого регулятора гром­кости можно произвести следующим образом. Для любого положения движка переключателя затухания а„ в децибелах определяется как

где R — общее требуемое сопротивление делителя; n — номер положения движ­ка переключателя.

Выбрав значения R (из условия согласования с усилительным каскадом) и затухания ап для каждого положения переключателя, это уравнение можно решить для каждого резистора:

где n=2, 3, ...

При равномерном шаге затухания

ап = аi — ( n — 1) Да,

где ai — максимальное затухание делителя регулятора (выбирается из условия необходимой глубины регулирования); Да — шаг затухания; Дa = a 1 /( N — 1), где N — максимальное число положений движка переключателя.

Рассчитанные сопротивления регулятора громкости при R = 10 кОм, ai = =60 дБ и N=23 приведены в табл. 2. С учетом особенностей слухового вос­приятия шаг затухания Да первых трех положений переключателя выбран рав­ным 6 дБ, следующих трех — 4 дБ, остальных — 2 дБ. Резистор R 23 и соответ­ствующий ему во втором канале служат для уменьшения взаимного влияния каналов и для выравнивания звукового давления в режиме «Моно». Регуля­тор баланса выполнен на резисторах R 24 — R 29 и переключателе SA 2. Ценя тонкоррекции Cl , C 2, R 32 подключают кнопкой SB 3.

Рис. 40. Принципиальная схема регулятора громкости и баланса на переключателях галетного типа

 

Таблица 2

n ан,ДБ Рассчитанное Кп.0м Номинал по шкале Е, Ом n ан, дБ Рассчитанное Rn . Ом Номинал по шкало Е, Ом
1 60 10,00 10 12 20 205,67 200
2 54 9,95 10 13 18 258,92 270
3 48 19,86 20 14 16 325,97 330
4 42 39,62 39 15 14 410,37 430
5 38 46,46 47 16 12 516,63 510
6 34 73,64 75 17 10 650,38 68 0
7 30 116,70 120 18 8 818,79 820
8 28 81,88 82 19 6 1030,80 1000
9 26 103,08 100 20 4 1297,70 1300
10 24 129,77 130 21 2 1633,71 1600 -
11 22 163,38 160 22 0 2056,72 2000

 

Монтаж узла выполнен на выводах переключателей. В качестве переклю­чателей SA 1 и SA 2 можно использовать любые галетного типа соответственно на 23 и 11 положений на два направления кнопки SB 1SB 3 — П2К с незави­симой фиксацией, резисторы — МЛТ-0,25, с точностью не хуже 5%, конденсато» ры — КМ-5, КМ-6.

Налаживание заключается в попарном подборе резисторов делителя регу­лятора громкости и баланса.

Цифровой регулятор громкости. Основным недостатком регуляторов на основе переменных резисторов и переключателей является сложность их раз­мещения непосредственно вблизи входов усилителя, что вызвано необходимо­стью размещения органов управления на передней панели усилителя. Это усложняет борьбу с помехами и наводками. Кроме того, наличие механических контактов ухудшает надежность работы таких регуляторов, увеличивает поме­хи в виде тресков, шорохов, щелчков. С развитием элементной базы появилась возможность создать электронные регуляторы громкости на базе специальных микросхем или при использовании переключателей аналоговых сигналов КМОП структуры, что позволяет устранить указанные недостатки.

На рис. 41 приведена схема одного канала регулятора громкости на база мультиплексора КМОП структуры. Регулятор используют совместно с селек­тором входных сигналов (см. рис. 13). Регулятор громкости состоит из элект­ронного переключателя на 32 положения и цифрового узла управления им. До­стоинством этого регулятора также является большая точность совпадения каналов, определяемая допуском резисторов делителя.

Цифровой регулятор громкости имеет следующие основные технические ха­рактеристики:

 

Номинальное входное напряжение........ 200 мВ

Номинальное выходное напряжение....... 200 мВ

Максимальное входное напряжение....... 6 В

Глубина регулировки громкости........ 64 дБ

Напряжение питания........... 15 и 7,5 В

Ток потребления............. 30 мА

Рис. 41. Принципиальная схема цифрового регулятора громкости

 

Собственно электронный переключатель выполнен на микросхемах DD 1, DD 2 и DA 1. Управляется он цифровой частью на микросхемах DD 3DD 9. Пе­реключатель состоит из двух секций: одной (на микросхеме DD 2 и резисторах R 13 R 16) на четыре положения с шагом 2 дБ, второй (на микросхеме DD 1 и резисторах R 3R 10) на восемь положений с шагом 8 дБ. Между ним» установлен развязывающий усилитель на микросхеме DA 1.1 с коэффициентом передачи около 1. Такое построение позволяет создать переключатель на 32 положения, используя всего 12 резисторов делителя. Состояние секций пере­ключателя определяется пятиразрядным кодом, вырабатываемым цифровым узлом управления, собранным на микросхемах DD 3DD 9.

Узел управления содержит задающий генератор (на элементах DD 3,3, DD 3.4, DD 5.2), вырабатывающий сигнал с частотой около 4 Гц, и реверсив­ный счетчик ( DD 4.1, DD 9), вырабатывающий пятиразрядный код управления.

Элементы DD 6.2, DD 6.3, DD 8.1, DD 8.2, DD 5.3, DD 3.5, DD 3.6, DD 7.1 — DD 7.3 обеспечивают реверсирование счетчика и ограничение счета снизу и сверху. Элементы DD 6.1, DD 3.2, DD 5.1, DD 5.2 необходимы, чтобы задающий генератор работал при нажатии любой из кнопок SB 1 или SB 2. Триггер DD 4.2 устраняет дребезг их контактов. С помощью кнопок SB 3SB 6 дела­ют предварительную установку счетчика DD 9 и тем самым задают любой на­чальный уровень громкости. Элемент DD 3.1 совместно с резисторами Rl , R 2 и конденсатором С1 формирует импульс установки счетчика в нулевое состо­яние.

Особенностью регулятора является то, что при разомкнутых контактах кнопок SB 1 и SB 2 весь электронный переключатель находится в статическом положении и не вносит в усиливаемый аналоговый сигнал дополнительных по­мех. Это позволяет монтировать аналоговую и цифровую части регулятора на одной плате.

Узел управления общий для двух каналов. Стереобаланса добиваются из­менением усиления выходного каскада в селекторе входных сигналов (см, рис. 13). Если сделать цифровое управление раздельным для левого и право­го каналов, то баланс устанавливают раздельной регулировкой громкости.

Регулятор смонтирован на унифицированной монтажной плате с примене­нием переходных панелей для микросхем серии К564. В устройстве исполь­зованы резисторы МЛТ-0,25 (с точностью 5% в делителе и 10% — остальные) и конденсаторы КМ-4, КМ-5, К53-1. В качестве кнопок SB 1, SB 2 можно при­менять переключатели без фиксации любого типа (например МП-3), вместо SB 3SB 6 — переключатели любого типа с фиксацией.

Учитывая сложность устройства, необходимо обратить внимание на пра­вильность монтажа. Для проверки работоспособности регулятора необходим стабилизированный источник питания с напряжением 15 В и током не менее 30 мА. Напряжение 7,5 В берется с селектора входных сигналов (см. рис. 13). Налаживание устройства состоит в попарном подборе резисторов делителя R 3 — R 10 и R 13 — R 16.

НОРМИРУЮЩИЕ УСИЛИТЕЛИ

 

Номинальное выходное напряжение источников звуковых программ, таких как магнитофон или тюнер, составляет около 200 мВ, таким же обычна делают и выходное напряжение микрофонного усилителя и предусилителя — корректора. Проходя через цепи регулировок громкости и баланса оно, как

правило, несколько уменьшается. Вместе с тем номинальное входное напряже-ние таких узлов усилителя, как регуляторы тембра, квадрапреобразователи, усилители мощности, обычно выбирают около 800 мВ.

Для согласования источников звуковых программ со входами предвыход­ных и выходных каскадов усилителя 34 применяют нормирующие усилители. К основным его техническим показателям относятся: входное и выходное со­противление, коэффициент усиления, перегрузочная способность, линейные и нелинейные искажения, отношение сигнал-шум, динамический диапазон, ста­бильность показателей. Нормирующий усилитель имеет плоскую АЧХ в диапа­зоне рабочих частот. Он часто является первым каскадом в тракте усилителя 34, поэтому его шумовые свойства существенно влияют на достижимый дина­мический диапазон всего усилителя в целом. Поэтому здесь применяют специ­альные микросхемы или малошумящие транзисторы, используемые в предусилителе-корректоре или микрофонном усилителе. Можно выполнить этот каскад и на малошумящих ОУ.

Нормирующий усилитель на ОУ К153УД2. Он имеет следующие основные технические характеристики:

 

Входное напряжение:

номинальное............0,1 В

максимальное ............ 1В

Выходное напряжение:

номинальное............0,8 В

максимальное............8 В

Перегрузочная способность, не менее......20 дБ

Коэффициент гармоник, не более.......0,08 %

Отношение сигнал-шум (невзвешенное) . . . . . 70 дБ

Номинальный диапазон частот........10...50000 Гц

Напряжение питания...........±15 В

Ток потребления............10 мА

 

На рис. 42 показана схема этого нормирующего усилителя с использова­нием ОУ, включенного по схеме неинвертирующего усилителя переменного тока. Усиление зависит от соотношения сопротивления резисторов R 3 и R 2. Резис­тор R 1 определяет входное сопротивление узла. Конденсатор С1, установлен­ный на входе, обеспечивает развязку по постоянному току, конденсаторы С5 и С6 устраняют паразитную связь по цепи питания. Конденсаторы СЗ и С4 необходимы для устойчивой работы усилителя в области высоких частот.

Рис. 42. Принципиальная схема нор­мирующего усилителя на ОУК153УД2

 

Усилитель собран на унифицированной монтажной плате (см. рис. 32). При монтаже использованы резисторы МЛТ-0,125, конденсаторы КМ-4, КМ-6, К50-6. Вместо микросхемы К153УД2 можно применить любые ОУ общего при­менения со своими цепями коррекции, например, К140УД7, К140УД8 и др.

Рис. 43. Принципиальная схема нор­мирующего усилителя на микросхеме К548УН1

 

Налаживание заключается в получении (подбором резистора R 2) необхо­димого усиления. При проверке нормирующего усилителя потребуется стаби­лизированный двухполярный источник напряжением ±15 В и током не менее 10 мА.

Нормирующий усилитель на микросхеме К548УН1. Он имеет следующие основные технические характеристики:

 

Входное напряжение:

номинальное............ 0,1 В

максимальное............ 0,6 В

Выходное напряжение:

номинальное............ 0,8 В

максимальное............ 5 ,В

Перегрузочная способность, не менее...... 15 дБ

Коэффициент гармоник, не более....... 0,1%

Отношение сигнал-шум (невзвешенное)..... 72 дБ

Номинальный диапазон частот........ 10... 50000 Гц

Напряжение питания ........... 24 В

Ток потребления . . . . . ....... 10 мА

 

Для уменьшения уровня шума нормирующего усилителя, как и других уз­лов, можно использовать малошумящую микросхему К548УН1 (рис. 43), Здесь она включена по схеме неинвертирующего линейного усилителя. Цепь ООС (резисторы R 2, R 3) определяет режим работы микросхемы по постоянному току. Коэффициент усиления по переменному току зависит от соотношения со­противления параллельно соединенных резисторов R 1 и R 2 и сопротивления R 3. Конденсаторы С1 и СЗ обеспечивают развязку по постоянному току на входе и выходе узла.

Монтаж усилителя, как и предыдущего, выполнен на унифицированной мон­тажной плате (см. рис. 32). В нем использованы резисторы МЛТ-0,125 и кон­денсаторы КМ-6, К50-6.

При настройке усилитель необходимо подключить к стабилизированному источнику питания напряжением 24 В и током не менее 15 мА. После этого, подбирая резистор R 2, на выводе 6 микросхемы добиваются напряжения 12 В. Затем подбором резистора R 1 устанавливают необходимый коэффициент уси­ления узла.

Нормирующий усилитель на дискретных элементах с большим динамичес­ким диапазоном. Чтобы получить более качественные параметры, когда нет специализированных микросхем, нормирующий усилитель можно выполнить на базе дискретных компонентов, воспользовавшись схемой ОУ на рис. 44. Он имеет следующие основные технические характеристики:

 

Входное напряжение:

номинальное . ,.......... 0,1 В

максимальное............ 1,8 В

Выходное напряжение:

номинальное . ........... 0,8 В

максимальное............ 14 В

Перегрузочная способность, не менее...... 25 дБ

Коэффициент гармоник, не более....... 0,06%

Отношение сигнал-шум (невзвешенное)...... 75 дБ

Номинальный диапазон частот........ 10... 100000 Гц

Напряжение питания........... ±24 В

Ток потребления............ 12 мА

 

Приведенный здесь ОУ на дискретных компонентах используется в кор­ректирующем усилителе (см. рис. 27) и в регуляторе тембра (см. рис. 48), где указаны основные особенности его работы. Некоторое отличие данного усилителя состоит в изменении параметров цепи обратной связи RIO , R 11, Это связано с получением необходимого коэффициента усиления.

Рис. 44. Принципиальная схема нормирующего усилителя на дискретных элемен­тах с большим динамическим диапазоном

 

Нормирующий усилитель смонтирован на печатной плате (рис. 28,а) Вместо транзисторов КТ3102Е можно использовать транзисторы КТ342, КТ315: вместо КТ3107Л — КТ361, КТ203. Параметры усилителя при этом несколько ухудшатся. В усилителе использованы резисторы типа МЛТ-0,125, конденсато­ры типа КМ-4, К53-1.

Налаживание усилителя заключается в проверке монтажа и подборе со­противления резистора R 10 для получения необходимого коэффициента усиле­ния. Для питания схемы необходим стабилизированный источник напряжения ±24 В и током не менее 15 мА.

ШУМОПОДАВИТЕЛИ

 

При прослушивании программ нередко при малых уровнях сигнала, и особенно в паузах музыкального произведения, заметен мешающий шум. Для расширения динамического диапазона и уменьшения шумов при воспроизвединии конструкторы создают различные системы шумоподавления. Известные си« стемы шумоподавления можно разделить на два вида. К первому относятся системы с однократным воздействием на сигнал, т, е. работающие только при воспроизведении, к второму — требующие предварительной обработки сигнала ори записи и последующем воздействии при воспроизведении.

К шумоподавителям первого вида относятся устройства понижения шума в паузах, так называемые пороговые шумоподавители, и устройства с исполь­зованием управляемых фильтров — динамические шумоподавители. Типичны­ми их представителями являются пороговый шумоподавитель NFD фирмы Panasonic и шумоподавитель DNL, предложенный фирмой Philips [10]. К ним же относится также эффективная отечественная система динамического шумо­понижения «Маяк» [11]. Основной недостаток этих устройств — частичное по­давление полезного сигнала — связан с принципом их работы.

Наиболее эффективными, но и более сложными, являются компаидерные ус­тройства, относящиеся к второму виду систем шумоподавления. Это, применя­емые в бытовой звукотехнике, системы Dolby (А, В, С), ANRS High Come и др. [12]. Они позволяют значительно снизить шум без ущерба для исходного сигнала. Но из-за того, что в случае их применения необходима двухкратная обработка сигнала, такие системы, как правило, используют в устройствах маг­нитной записи.

В усилителях 34 целесообразно применять шумоподавители первого вида — пороговые и динамические. В простейшем же случае для понижения шума ог­раничивают полосу пропускания ФНЧ (с частотой среза 5 ...7 кГц) и регуля­тором тембра. Так как шумоподавитель вносит заметный вклад в нелиней­ные искажения всего усилительного тракта и ухудшает его динамические ха­рактеристики, то при воспроизведении звуковых программ с качественных но­сителей информации шумоподавитель следует исключать из тракта прохожде­ния сигнала. Для этого в усилителе предусматривают специальный переключа­тель (S6 на рис. 1).

Далее приводятся описания двух простых шумоподавителей для исполь­зования в усилителях 34. Однако применение этого узла в высококачествен­ном усилителе 34 не обязательно.

Динамический шумоподавитель на основе управляемого фильтра. Уста­новлено, что спектр музыкальных сигналов зависит от их громкости таким об­разом, что с уменьшением громкости относительное содержание высокочастот­ных составляющих в сигнале уменьшается. Это дает возможность существенно ослабить уровень высокочастотных шумов за счет управляемого ограничения полосы усилителя в паузах и при малых уровнях сигнала. На управляемом из­менении частотной характеристики тракта звуковоспроизведения основан прин­цип работы динамических шумоподавителей (принцип динамической фильтра­ции).

Основные технические характеристики динамического шумоподавителя:

 

Номинальное входное напряжение...... 0,8 В

Максимальное входное напряжение...... SB

Перегрузочная способность, не менее..... 20 дБ

Коэффициент передачи на частоте 1 кГц .... 1

Крутизна спада АЧХ в полосе подавления . . . . 10 дБ на октаву

Полоса частот (на уровне — 3 дБ) ...... 20 ... 20 000 Гц

Коэффициент гармоник, не более...... 0,2%

Входное сопротивление......... 100 кОм

Напряжение питания..........±15В

Ток потребления...........10 мА

Рис. 45. Принципиальная схема динамического шумоподавителя на основе управ­ляемого фильтра

 

Схема этого шумоподавителя приведена на рис. 45. Основным узлом здесь является управляемый ФНЧ, частота среза которого изменяется в широ­ком диапазоне частот от 1 до 20 кГц. Фильтр состоит из элементов R 5, R 5, С6, С7 и VT 1. Управляющее напряжение поступает на затвор транзистора VTI с резистора R 10 из выпрямительного каскада на элементах DA 2, VD 1, VD 2. Необходимый коэффициент передачи устройства и согласование с остальными каскадами усилителя обеспечивают элементы DAI , DA 3.

Шумоподавитель собран на унифицированной монтажной плате (см. рис. 32). В нем использованы резисторы МЛТ-0,25, СПЗ-22, конденсаторы КМ-5, КМ-6, К53-1. Вместо указанных на схеме можно использовать другие ОУ, например, К153УД1, К140УД7 со своими цепями коррекции.

При настройке шумоподавителя потребуется стабилизированный двухполяр-ный источник питания напряжением ±15 В и током не менее 25 мА. Ее про­изводят в следующем порядке. К выходу шумоподавителя подключают милли­вольтметр переменного тока. Движки всех переменных резисторов должны на­ходиться в нижнем по схеме положении. На вход шумоподавителя подают си­нусоидальный сигнал частотой 5 кГц и уровнем 0,8 В (действующее значение). Резистором R 2 устанавливают выходное напряжение около 0,8 В. Подстраивая резистор R 8, уменьшают выходной сигнал на 25 дБ (около 45 мВ). Затем ре­зистором R 10 увеличивают сигнал на выходе таким образом, чтобы его уровень был на 3 дБ ниже по отношению к 0,8 В (около 0,57 В). На этом налажи­вание шумоподавителя заканчивается.

Пороговый шумоподавитель на микросхемах. Работа пороговых шумопода-вителей основана на принципе автоматического уменьшения усиления в тракте воспроизведения в паузах, когда шумы проявляются наиболее сильно. Для оп­ределения паузы используется различие уровней сигнала и шума. Порог сраба­тывания обычно устанавливают вручную таким, чтобы уменьшение шума не сопровождалось заметным снижением уровня слабых сигналов.

Основные технические характеристики порогового шумоподавителя, выпол­ненного на микросхемах:

 

Номинальное входное напряжение....... 0,8 В

Максимальное входное напряжение....... 8В

Перегрузочная способность, не менее ...... 20 дБ

Коэффициент передачи на частоте 1 кГц..... 1

Интервал регулировки порога срабатывания .... — 40... — 20 дБ

Коэффициент гармоник.......... 0,2%

Входное сопротивление .......... 100 кОм

Напряжение питания........... ±15 В

Ток потребления............ 15 мА

Рис. 46. Принципиальная схема порогового шумоподавителя на микросхемах

 

Принципиальная схема этого шумоподавителя приведена на рис. 46. Шу-моподавитель состоит из управляемого делителя, выполненного на резисторе КЗ и транзисторе VT 1, устройства управления на микросхеме DA 1 и согласу­ющего каскада на микросхеме DA 2. Шумоподавитель включается кнопкой SB 1. При превышении входным сигналом порога, устанавливаемого резистором R 4 t на конденсаторе С5 появляется напряжение, закрывающее транзистор VTL При этом входной сигнал поступает на выход устройства без ослабления. В паузе или когда уровень сигнала меньше, чем порог срабатывания, напряжение на С5 становится положительным (определяется делителем R 8, R 9), транзистор VT 1 открывается и коэффициент передачи уменьшается. Значение коэффициен­та передачи определяется соотношением сопротивлений резистора R 3 и канала сток — исток VT 1.

Для монтажа шумоподавителя использована унифицированная плата. В ней применяют резисторы типов МЛТ-0,25, СПЗ-22, конденсаторы КМ-4, КМ-6, Кнопка SB 1 — П2К с независимой фиксацией или любой переключатель на два положения. Вместо указанных на схеме ОУ можно использовать и другие ОУ общего применения со своими цепями коррекции, например, К153УД1 К140УД7 КНОУД8.

Налаживание шумоподавителя состоит в проверке правильности монтажа. Для работы устройства необходим стабилизированный двухполярный источник питания напряжением ±15 В и током не менее 15 мА. Порог шумоподавле­ния устанавливают при подаче на вход сигнала частотой 1 кГц и уровнем около 8 мВ ( — 40 дБ относительно 0,8 В). Движок резистора R 4 должен на­ходиться в таком положении, чтобы при входном сигнале уровнем — 40 дБ напряжение на выходе было равно нулю, а при увеличении входного сигнала на 3 дБ напряжение на выходе шумоподавителя появлялось.

Дата: 2018-09-13, просмотров: 846.