Термические сопротивления и теплопотери
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

       По характеру прокладки следует различать одно- и многотрубные подземные теплопроводы. В однотрубных прокладках все термические сопротивления соединены последовательно, в многотрубных – параллельно одно по отношению к другому и последовательно к цепи канал – грунт.

       При бесканальной прокладке термическое сопротивление однотрубного теплопровода представляет собой сумму двух слагаемых – сопротивления слоя изоляции и сопротивления грунта. При канальной прокладке, из-за наличия воздушной прослойки между изолированным теплопроводом и стенкой канала, сопротивление теплопровода определяется как сумма последовательно соединенных сопротивлений соответственно слоя изоляции, наружной поверхности изоляции, внутренней поверхности канала, стенок канала, грунта.

       При прокладке многотрубного теплопровода в общем канале, тепловые потери от каждого поступают в канал, а затем общий поток отводится через стенки канала и грунт в наружную среду. Задача теплового расчета многотрубного теплопровода в канале сводится к определению температуры воздуха в канале. Зная её, можно определить теплопотерю каждого трубопровода по общим правилам теплового расчета трубопроводов, окруженных воздухом. Температура воздуха в канале определяется по уравнению теплового баланса. При установившемся тепловом состоянии количество теплоты, подводимой от трубопроводов к воздушной прослойке канала, равно количеству теплоты, отводимой от воздушной прослойки через стенки канала и массив грунта в окружающую среду.

       Тепловые потери сети слагаются из двух частей: 

       а) теплопотерь участков трубопровода, не имеющих арматуры и фасонных частей, - линейные теплопотери

       б) теплопотерь фасонных частей, арматуры, опорных конструкций, фланцев и т.д., - местные теплопотери.

       Линейные тепловые потери теплопровода

 

Qл = q·l,         (5.23)


где q – удельные тепловые потери, Вт/м или ккал/(ч·м); l – длина теплопровода, м.

       Тепловые потери отводов, колен, гнутых компенсаторов и других деталей, периметр поперечного сечения которых близок к периметру трубопровода, подсчитываются по формулам для прямых труб круглого сечения. Тепловые потери фланцев, фасонных частей и арматуры определяются обычно в эквивалентных длинах трубы того же диаметра:

 

Qм = q lэ , Дж/с или ккал/ч,  (5.24)


где Qм - местные теплопотери, lэ - эквивалентная длина, м.

       Суммарные тепловые потери теплопровода определяются по формуле

 

 Q = q ( l + lэ ) = ql ( 1 + β ),          (5.25)


где β = lэ / l – коэффициент местных потерь теплоты, для предварительных расчетов можно принимать равным 0,2 - 0,3.

       Для оценки эффективности изоляционной конструкции часто пользуются показателем, называемым коэффициентом эффективности изоляции:

 

       ηи = ( QгQи )/ Qг = 1 – Qи / Qг ,                                           (5.26)


где Qг и Qи - тепловые потери голой и изолированной труб. Обычно коэффициент эффективности изоляционных конструкций теплопроводов ηи = 0,85 – 0,95.

       В процессе движения по теплопроводу энтальпия теплоносителя падает. Вследствие этого происходит падение температуры теплоносителя вдоль теплопровода, а при транспорте насыщенного пара выпадает конденсат. При коротких теплопроводах, когда ожидаемое падение температуры не превышает 3 - 4 % значения температуры в начале участка, расчет может проводиться в предположении постоянства удельных тепловых потерь.

        Уравнение теплового баланса в этом случае имеет вид:

 

       G c ( t1 t2 ) = q l ( 1 + β ),                                                     (5.27)

 

где G – расход теплоносителя на участке; c – теплоемкость теплоносителя; t1 и t2 - температуры теплоносителя в начале и конце участка, °С; 1 – длина участка, м; q – удельные линейные тепловые потери.

       Из (5.21) следует

 

       t2 = t1 – ql (1 + β) / (Gc).                                                                    (5.28)

           

       При транспорте перегретого пара, когда наряду с тепловыми потерями имеют место значительные потери давления, можно пользоваться более точным методом. По известному давлению p2  в конце участка и найденной из теплового баланса энтальпии

 

       h2  = h1 – ql (1 + β) / G                                                                          (5.29)

 

с помощью таблиц или диаграмм водяного пара можно определить температуру t2.

       При длинных и слабоизолированных участках паропровода или малых расходах теплоносителя, когда ожидаемое падение температуры значительно, необходимо учитывать изменение удельных теплопотерь по длине участка.

 

      





Выбор толщины изоляции

       Выбор толщины изоляции определяется техническими и технико-экономическими соображениями. Основные технические соображения, которыми руководствуются при выборе толщины изоляционного слоя, заключаются в следующем:

1) обеспечение заданной температуры теплоносителя в отдельных участках теплосети. Это условие предъявляется обычно к паропроводам в тех случаях, когда должна быть гарантирована подача перегретого пара отдельным абонентам;  

2) выдерживание нормированных теплопотерь;

3) непревышение заданной температуры поверхности изоляции.

При прокладке теплопровода в рабочих помещениях или в проходных каналах по условиям безопасности предельная температура поверхности должна составлять 40 – 50 °С. В некоторых случаях предельная температура поверхности выбирается из условия защиты от разрушения наружной оболочки изоляции.

На основании технических требований определяется предельная минимальная толщина тепловой изоляции. Вопрос о целесообразности увеличения толщины и повышения эффективности тепловой изоляции решается технико-экономическим расчетом.

 

ПРОЧНОСТНОЙ РАСЧЕТ

 

    Особенности расчета трубопроводов тепловой сети на прочность

 

    Специфические особенности трубопроводов тепловых сетей заключаются в следующем:  

    а) стенки труб испытывают напряжения от внутреннего давления теплоносителя меньшие, чем изгибающие напряжения от компенсации температурных удлинений труб и изгиба от весовых нагрузок;

     б) температура труб не превышает 160 – 200 °С, при которой механические свойства сталей практически не отличаются от свойств при температуре 20 °С;  

    в) характер и величина нагрузок существенно различны в зависимости от способа прокладки труб (подземная в непроходных каналах, в проходных туннелях, бесканальная, воздушная) и способов компенсации температурных удлинений;  

    г) пространственные схемы трубопроводов, требующие наиболее сложных расчетов на компенсацию температурных удлинений, встречаются относительно редко, только в пределах зданий ТЭЦ, котельных, насосных станций и др.

    Рекомендации по расчету на прочность и компенсацию температурных удлинений, содержащиеся в ряде руководств по проектированию станционных трубопроводов, при проектировании тепловых сетей могут использоваться в ограниченных пределах, так как они не учитывают условия работы и нагрузок, характерных для тепловых сетей.

    В расчетах на прочность должны учитываться следующие нагрузки и воздействия на трубопроводы, различающиеся по величине и характеру:

    а) весовые при расчете труб на изгиб;

    б) ветровые ( для надземных прокладок на эстакадах);

    в) от сил трения в подвижных опорах или трения в окружающем грунте (последние в бесканальных прокладках);

    г) воздействие внутреннего давления теплоносителя в трубах;

    д) воздействие изменения температуры труб.

    Весовые нагрузки вызывают большие изгибающие напряжения, которые составляют значительную часть общего, суммарного напряжения в стенках труб. Значительно меньше на прочность трубопроводов теплосетей влияет внутреннее давление, величина которого обычно не превышает 1,6 МПа. Поэтому в отличие от многих других напорных трубопроводов давление не является определяющим фактором при назначении толщины стенок трубопроводов из условия их прочности.

    Ветровые нагрузки и нагрузки от сил трения в опорах значительно меньше других нагрузок оказывают влияние на прочность трубопроводов. При необходимости влияние трения может быть снижено простым конструктивным решением – заменой скользящих опор на катковые или (при надземных прокладках) подвесными, на тягах.

    Изгибающие напряжения от собственной массы трубопроводов определяются по известным формулам сопротивления материалов для расчета многопролетных неразрезных балок. Максимальный изгибающий момент над опорами M и в середине пролета между опорами Ml/2 , Н·м,

 

    M = q l2 / 12 ;                                                                             (5.30)                         
    Ml/2 = q l2 /24 ;                                                                                (5.31)                                                                                 

Максимальный прогиб fl/2 , м, определяется из выражения

 

    F1/2 = q l4 / 384 EI,                                                                      (5.32)                                                            

где  q – расчетная весовая нагрузка на единицу длину трубопровода, Па/м; l – расстояние между опорами (одинаковое для всех пролетов), м; EI – жесткость поперечного сечения трубы; E – модуль продольной упругости, Па/м; I – экваториальный момент инерции трубы, м4.

    При максимально допустимых расстояниях между опорами, что позволяет существенно снизить стоимость надземных прокладок трубопроводов на эстакадах, кроме расчета на прочность, необходимо дополнительно определять прогибы по формуле (5.25). Большие прогибы могут вызвать образование «мешков» в пониженных точках, в которых будет застаивается вода, что может приводить к гидравлическим ударам в пусковом режиме, например при прогреве паропроводов.

    В непроходных каналах расстояния между опорами целесообразно уменьшить, т.к. это не отразится на стоимости сооружения теплосети, а в то же время позволит уменьшить суммарное действующее напряжение в стенках труб. При надземной прокладке трубопроводов в целях экономии металла следует стремиться к максимальному увеличению расстояний между опорами, для этого целесообразно применять трубы с повышенными механическими показателями.

    Усилия, воспринимаемые неподвижными опорами, складываются из неуравновешенных сил внутреннего давления, реакций свободных опор и реакций компенсаторов температурных деформаций. Эти усилия, как правило, действуют с обеих сторон неподвижной опоры. В зависимости от направления их векторов усилия взаимно уравновешиваются (т.е. вычитаются) или суммируются.

    Результирующее усилие, действующее на неподвижную опору может быть представлено трехчленом

 

    N = a p F в + µ qвl + ∆S, Н,                            (5.33)

 

где a – коэффициент, зависящий от направления действия осевых усилий внутреннего давления с обеих сторон опоры, что определяется конфигурацией трубопровода и способом компенсации температурных деформаций; при неизменном диаметре трубопровода он может иметь значение 0 или 1; p – внутреннее рабочее давление в трубопроводе, Па; F - площадь внутреннего сечения трубопровода, м2; µ - коэффициент трения на свободных опорах; Δl – разность длин участков трубопровода с обеих сторон неподвижной опоры (участок – расстояние между опорой и компенсатором), м; S – разность сил трения осевых скользящих компенсаторов или сил упругости гибких компенсаторов с обеих сторон неподвижной опоры, Н. Первое слагаемое представляет собой результирующее осевое усилие внутреннего давления, второе – результирующую реакцию свободных опор, третье – результирующую осевую реакцию компенсаторов.

 


Дата: 2018-11-18, просмотров: 383.