Классификация твердых тел по проводимости
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

КОНСПЕКТ ЛЕКЦИЙ

(3,4 семестр)

 

для студентов 1 курса

 

 

специальности 11.02.02  Техническое обслуживание и ремонт

                                       радиоэлектронной техники (по отраслям)                          

 

 

г. Нижний Новгород

 

2017г.

 

Содержание

1 Основы зонной теории …………………………………………….3

2 Внутреннее строение полупроводников………………………….5

3 Контактные явления………………………………………………..7

4 Внутренний и внешний фотоэффект……………………………..16

5 Буквенно-цифровое обозначение диодов, транзисторов……....18

6  Лазеры……………………………………………………………...21

7  Полупроводниковые диоды……………………………………...26

8  Транзисторы……………………………………………………….32

9  Интегральные микросхемы логических элементов…………….50

10 Усилительные устройства……………………………………….57

   Литература…………………………………………………….…….90

 

1 Основы зонной теории

Внутреннее строение полупроводников

 

Атомы твердого вещества размещены в строго определенной последовательности, на одинаковом расстоянии друг от друга, образуя так называемую кристаллическую решетку.

Связь соседних атомов друг с другом с помощью 2-х валентных электронов называется ковалентной связью (один электрон принадлежит одному атому, а второй - другому).

Известно, что при абсолютном нуле у чистого (т.е. беспримесного) полупроводника электропроводность отсутствует (нет свободных электронов).

Это связано с тем, что все электроны участвуют в ковалентных связях.

При комнатной температуре часть валентных электронов получает тепловую энергию, достаточную для отрыва от атома, и переходит из валентной зоны в зону проводимости, т.е. становятся свободными.

При этом ковалентная связь оказывается неполной (вместо 2-х валентных электронов присутствует 1).

Отсутствие электрона в ковалентной связи называется дыркой.

Дырки ведут себя как элементарные положительные заряды (имеют такой же по величине заряд, как и электроны, только со знаком «+»).

Процесс образования пары (свободный электрон + дырка) называется генерацией.

Дырка может быть заполнена электроном – валентным или свободным.

В первом случае валентный электрон переходит на место дырки из соседней ковалентной связи, образуя дырку в новом месте.                                                                                                                                                                                                  

Таким образом, дырки, как и свободные электроны, совершают хаотическое тепловое движение в полупроводнике, т.е. являются носителями заряда.

Во втором случае исчезают два носителя заряда: свободный электрон и дырка.

Процесс заполнения дырки свободным электроном называется рекомбинацией.                                                                                                       

Рекомбинация – это процесс восстановления разорванной ковалентной связи, т.е. процесс, обратный генерации.

 

Примесная проводимость полупроводника

В электронике часто применяются полупроводники, у которых часть атомов основного вещества замещена атомами другого вещества – примесью.

 

Введение в чистый полупроводник примесей называется легированием.

 

Легирование резко изменяет свойства полупроводника. Основные полупроводниковые элементы (германий, кремний) четырехвалентны.

Для легирования используются либо трехвалентные элементы: индий (In), бор (В), алюминий (Al); либо пятивалентные: фосфор (Р), сурьма (Sb), мышьяк (As), т.е. валентность примеси должна отличаться от валентности основного вещества на единицу.

Токи в полупроводниках

В полупроводнике электрический ток может быть вызван двумя причинами:

· электрическим полем;

· разностью концентраций носителей заряда.

Дрейфовый ток

Рассмотрим первую причину.

Направленное движение носителей заряда (НЗ) под действием электрического поля называется дрейфовым током.

Если к полупроводнику подключить источник постоянного напряжения, то под действием внешнего электрического поля электроны и дырки начнут перемещаться в противоположных направлениях (электроны будут двигаться к плюсовой клемме источника питания, т.е. в сторону, противоположную направлению поля, а дырки – к минусовой, т.е. по направлению поля) – возникнет дрейфовый ток.

                                       полупроводник

                               Ө      

             IДР                           Е

                                            

                                      UПИТ

Е – напряженность электрического поля

 

Диффузионный ток

Диффузионный ток – это направленное движение НЗ, возникающее из-за разности их концентраций.

Если какую-то часть полупроводника нагреть, то в этой области возникнет повышенная концентрация зарядов (за счет термогенерации, т.е. генерации, вызванной тепловой энергией).

Но чем выше концентрация НЗ, тем больше вероятность столкновения электронов друг с другом, в результате чего электроны будут как бы «выталкиваться» из области с повышенной концентрацией НЗ в область, где эта концентрация ниже.

Таким образом, НЗ стремятся к выравниванию концентраций.

Это явление получило название «диффузия» - проникновение.

Контактные явления

P - n переход

P - n переход – это контакт двух полупроводников с разной проводимостью.

Контакт нельзя создать простым соприкосновением двух полупроводников, т.к. при этом неизбежен слой воздуха, окислов, грязи. Для получения p-n перехода используется особая технология.

                               p             n

         

 

                                        d – толщина перехода  

 

d (0,1÷1) мкМ (1мкМ=10-6 М)

 

Заштрихованная область называется приконтактной областью.

 

Емкости p - n перехода

                            Барьерная емкость

                                        p                          n          

                                                                                               

                                                                            

                                                                                          

                                                      do                             

do – толщина перехода

В p-n переходе имеется разность концентраций: в p-области много дырок, а в n-области их мало, в n-области много электронов, а в р-области их мало. Наличие разности концентраций приводит к диффузии: дырки из р-области переходят в n-область, в обратном направлении движутся электроны. В результате диффузии в р-области появляются избыточные (не скомпенсированные) отрицательные ионы примеси, и она заряжается отрицательно. В n-области появляются избыточные положительные ионы примеси, и она заряжается положительно. Возникает разность потенциалов – потенциальный барьер.

 Данный переход можно рассматривать, как плоский конденсатор, обкладками которого являются p-и n-области, а диэлектриком – приконтактная область, имеющая повышенное сопротивление. Емкость такого конденсатора называется барьерной, т.к. она обусловлена наличием потенциального барьера.                                                                             

                                                 –q +q

             

    В равновесном состоянии перехода, т.е. когда ЕВНЕШН=0, барьерная емкость зависит от площади p-n перехода, диэлектрической проницаемости полупроводника и толщины запирающего слоя:

 , где

- относительная и абсолютная диэлектрическая проницаемость.

При подаче обратного напряжения толщина перехода возрастает (обкладки конденсатора как бы раздвигаются), а, следовательно, емкость этого конденсатора уменьшается:

 , где

- барьерная емкость перехода при наличии обратного напряжения;

 - барьерная емкость перехода при отсутствии внешнего напряжения;

- потенциальный барьер перехода при отсутствии внешнего напряжения;

U ОБР - обратное напряжение, подаваемое на переход.

 

  Диффузионная емкость

При прямом включении перехода возникает еще одна емкость – диффузионная.

Прямое напряжение, подаваемое на переход, обеспечивает более интенсивный процесс диффузии основных носителей заряда в соседние области. Это приводит к тому, что пришедшие в большом количестве в соседние области заряды не успевают прорекомбинировать с зарядами противоположного знака и накапливаются, образуя объемные заряды. Чем больше прямое напряжение, тем больше величина этих объемных зарядов.

                                      p                            n                                                

                                                                                    

                                  ОНЗ                        + +                 

                                _ _                  Ө ОНЗ + +                     

                                _ _                                                 

                                          ЕВН                                                                                                                       

                                                                                                                

                                                                           ЕВНЕШН                                                      

UПР
                                                              о о                                   

Изменение объемного заряда в зависимости от приложенного прямого напряжения характеризует емкость, называемая диффузионной (т.к. обусловлена диффузией ОНЗ) и определяемая формулой:

или , где

 - изменение прямого напряжения;

 - изменение объемного заряда.

 

Пробой p - n перехода

Пробойэто резкое возрастание обратного тока перехода при условии, что обратное напряжение превысит максимально допустимое значение, т.е.

      

                                                                   справочная величина

Обратная ветвь ВАХ при пробое:

                                  Uобрmax  IО 0

                    UОБР

                                    1                                    1- электрический пробой      

                                                                            2 - тепловой пробой

 

 

                           

                                 2                       IОБР                                                                

Виды пробоев:

Пробой
                                   

                                                                         

                    Обратимый                        Необратимый

                     процесс                                    процесс

     
Электрический            пробой
 
Тепловой пробой


Лавинный пробой
Туннельный пробой
                                                                                                           

                                                                                                            

                                                                                                         

Тепловой пробой

Тепловой пробой возникает за счет нарушения теплового баланса между теплом, которое выделяется в переходе, и теплом, котороеотводится (рассеивается корпусом прибора):

( количество теплоты)

С ростом обратного напряжения выделяемая в переходе мощность увеличивается , что приводит к разогреву перехода и усилению термогенерации (генерация, вызванная повышением температуры) пар носителей заряда, т.е. к увеличению концентрации ННЗ, а, следовательно, к росту обратного тока. Рост обратного тока сопровождается дальнейшим увеличением выделяемой мощности, т.е. большим разогревом перехода и более интенсивной термогенерацией и т.д., т.е. идет нарастающий процесс:

 и т.д.

В итоге переход перегревается и разрушается (разрушается кристаллическая решетка) – процесс необратимый.

Процесс называется обратимым, если при уменьшении обратного напряжения до допустимого значения восстанавливается нормальный режим работы перехода, т.е. обратный ток принимает стационарное значение теплового тока .

Для обеспечения теплового режима полупроводниковых приборов используются радиаторы, изготавливаемые из материалов с высокой теплопроводностью (например, Al, Cu).

 

Электрический пробой

Тепловому пробою предшествует электрический пробой.

При электрическом пробое обратный ток перехода резко возрастает поддействием сильного электрического поля.

а) Лавинный пробой

Лавинный пробой возникает в так называемых «толстых» переходах. Под действием сильного электрического поля электроны, двигаясь с большой скоростью, приобретают кинетическую энергию, достаточную для ударной ионизации нейтральных атомов кристаллической решетки.

 Механизм ударной ионизации: свободный электрон, обладающий большой кинетической энергией, ударяясь о нейтральный атом, передает валентным электронам этого атома часть своей энергии, и они отрываются от атома, становясь свободными. Атом при этом ионизируется.

Возникшие в результате ионизации свободные электроны также разгоняются электрическим полем, ударяются о новые атомы кристаллической решетки и выбивают из них следующую партию электронов. Процесс нарастает лавинообразно (как снежный ком) – отсюда и название пробоя – «лавинный».

Для ударной ионизации необходимо поле с напряженностью:

В результате ударной ионизации возникает размножение НЗ, и обратный ток резко возрастает – возникает лавинный пробой.

На лавинном пробое работают такие полупроводниковые приборы, как стабилитроны, тиристоры, лавинные транзисторы и др.

 

б) Туннельный пробой

Если напряженность электрического поля достигнет значения  и переход будет очень тонкий (с толщиной запирающего слоя ), возможен туннельный пробой – переход электронов из валентной зоны (ВЗ) одного полупроводника в зону проводимости (ЗП) другого полупроводника без изменения энергии.

Механизм туннельного пробоя:

Электрон, движущийся в сторону очень узкого перехода, под действием очень сильного поля пройдет через переход, как через туннель, и займет свободный уровень с такой же энергией по другую сторону перехода.

Таким образом, обязательным условием туннельного пробоя, кроме сильного поля и тонкого перехода, является наличие свободного уровня по другую сторону перехода. При этом ВЗ одного полупроводника должна находиться на одном уровне с ЗП другого полупроводника.

На туннельном пробое работают туннельные диоды.

Туннельный и лавинный пробои обратимы – снятие обратного напряжения полностью восстанавливает свойства p-n перехода.

 

 

Внутренний фотоэффект

Поток фотонов нельзя рассматривать как непрерывный поток. Он представляет собой поток отдельных порций энергии – квантов.

При облучении полупроводника таким потоком фотоны отдают свою энергию валентным электронам, освобождая их от ковалентных связей. Если эта энергия превышает ширину запрещенной зоны, то электроны смогут перейти из ВЗ в ЗП, т.е. возникнет фотогенерация (ее еще называют внутреннимфотоэффектом).

Фотогенерация – это процесс образования пар электрон + дырка в полупроводнике при его электромагнитном облучении.

Возникшие в результате фотогенерации НЗ увеличивают проводимость полупроводника. Проводимость, вызванная действием фотонов, называется фотопроводимостью.

Рассмотрим собственный полупроводник:

                          W                        hv                                     

                                Ө ni                    Ө nф        

                    Wп                                   

                                  генерация        фотогенерация  W

                    Wв                              

                                Өpi                     Ө pф

                         

                                                

∆W – ширина запрещенной зоны;

pi, ni – концентрация дырок и электронов, образованных в процессе генерации;

pф, nф – концентрация дырок и электронов, образованных в процессе фотогенерации.

У металлов явление фотопроводимости отсутствует, т.к. у них огромна концентрация свободных электронов (N 1022 1/см3) и не может заметно возрасти под действием облучения.

Внешний фотоэффект

Внешний фотоэффект – это появление фото-ЭДС в p-n переходе при его электромагнитном облучении.                                                                                       

                                p              n              

                                                       

                             ОНЗ     Ө   ОНЗ

                        +                                         -                    

                        + ННЗ Ө                   -

                        +       ЕВН    ННЗ  -

                                       

                                       

                                                PV

                                           +      –  

Поток падающих на p-n переход фотонов вызывает фотогенерацию пар носителей заряда, т.е. возникает внутренний фотоэффект. Образовавшиеся при этом носители заряда под действием внутреннего поля ЕВН начинают перемещаться: дырки двигаются по направлению поля, а электроны – против. В результате этого перемещения в p-области скапливаются положительные заряды, а в n-области – отрицательные. Возникает разность потенциалов. Если к такому переходу подключить микровольтметр, то прибор покажет какое-то напряжение, которое и является фото-ЭДС.

 

Фото-ЭДС – это разность потенциалов, возникающая в результате разделения внутренним полем перехода носителей заряда, образовавшихся за счет электромагнитного облучения перехода.

 

Пример1: КС182А

К – кремниевый, бытовой

С – стабилитрон

182 – серия

1 – маломощный,

А – разброс параметров

 

Пример2: 2С620А

2 – кремниевый, с военной приемкой

С – стабилитрон

620 – серия

6 – средней мощности,

А – разброс параметров

БЦО транзисторов

БЦО транзисторов состоит из четырех элементов:

1-й элемент - (буква или цифра) указывает материал полупроводника:

Г (1) – германий (Ge)

К (2) – кремний (Si)

А (3) – соединения галлия (например, арсенид галлия – GaAs)

И (4) – соединения индия (например, фосфид индия – InP)

Буква ставится, если транзистор предназначен для бытовой аппаратуры. Цифра означает военную приемку, т.е. если транзистор предназначен для спецтехники. (Первые элементы БЦО транзисторов и диодов одинаковы.)

 

2-й элементбуква «Т» (присваивается биполярным транзисторам) или буква «П» (присваивается полевым транзисторам).

 

3-й элементтрехзначное число (серия). Первая цифра серии характеризует мощность и частотный диапазон:

    1   2  3 Маломощные

 

    4   5  6 Средней мощности

 

                   7   8  9 Мощные    

       НЧ СЧ ВЧ                      

Вторая и третья цифра серии означает порядковый номер разработки.

 

4-й элементбуква, характеризующая разброс параметров.

Пример: КТ315А                                       Пример:2П901А  

К – кремниевый, бытовой                2 – кремниевый, с военной приемкой

Т – биполярный транзистор          П – полевой транзистор 

315 – серия                                     901 - серия

3 – маломощный, высокочастотны 9 – мощный, высокочастотный

15 – номер разработки                  01 – номер разработки

А – разброс параметров                А – разброс параметров

Лазеры

Существование лазера предсказал писатель Алексей Толстой в своем произведении «Гиперболоид инженера Гарина». Лазеры бывают: твердотельные, жидкостные, газовые (в зависимости от состояния рабочего вещества).

Принцип работы лазера

Для эффективного использования света желательно получить синхронное (одновременное) и синфазное (одинаковое по фазе) излучение атомов, т.е. так называемое когерентное излучение.

Пусть имеется цепочка возбужденных атомов. Атом считается возбужденным, если электрон в нем перешел со своей основной орбиты на более высокую за счет получения дополнительной энергии, например, за счет поглощения света (световой энергии), под влиянием температуры (тепловой энергии), при ударе в атом внешнего электрона (кинетической энергии) и т.д.

Пусть внешний фотон (т.е. порция световой энергии, называемая квантом) ударяется в крайний атом по направлению вдоль цепочки. Это вызовет излучение фотона из этого атома, т.е. возникнет уже два фотона. Один из них ударит в следующий атом и т.д. - имеем «принцип домино». В результате световой поток усиливается в огромное число раз. Теоретически коэффициент усиления может достигать гигантского значения – 1020.

Причем, двигаться эта огромная армия фотонов, имеющих одинаковую энергию, будет в одном направлении, т.е. излучение будет когерентным!

Постоянное подведение к основному веществу дополнительной энергии (для возбуждения большого количества атомов и получения когерентного излучения) называется накачкой.

Рассмотренный примитивный вариант усилителя света получил название лазер – от начальных букв английского выражения, в переводе означающего «усиление света с помощью вынужденного излучения».

Лазеры на гетероструктурах

Особое значение имеют гетероструктурные лазеры, которые не требуют охлаждения и работают при комнатнойтемпературе. Этими проблемами занимался академик Жорес ИвановичАлферов, получивший в 2000г. за выдающиеся открытия в области гетероструктур Нобелевскую премию.

  

Гетеропереходом называется переход, образованный между двумя полупроводниками с различной шириной запрещенной зоны.

Полупроводники должны иметь близкие кристаллические структуры, например переходы, созданные из так называемых «твердых растворов»: AlGaAs-GaAs, InP-GaInAs и т.д.

Этим гетеропереходы отличаются от гомопереходов.

 

Гомопереход – этопереход, созданный на основе одного полупроводника с различной проводимостью (например, контакт кремния с электронной и дырочной проводимостью).

 

Рассмотрим p-n гетеропереход, у которого ширина запрещенной зоны n-полупроводника больше, чем у p-полупроводника:

       n                                          p                 

                                                         

                                                                              WП

       Ө         

                                                                        W`

                                                        

                                                                               WВ`

     W                                                         

                                                     

 

                                    W> W`

Как видно из энергетической диаграммы такого перехода, высота энергетического барьера для электронов, движущихся из n-области в p-область ( ) гораздо меньше энергетического барьера для дырок, движущихся из p-области в n-область ( ). Поэтому при подаче на такой гетеропереход прямого напряжения будет преобладать инжекция электронов, т.е. получится односторонняя инжекция. Этим гетеропереход принципиально отличается от гомоперехода.       

Гетеропереход может быть создан на основе полупроводников одного типа проводимости (p-p+ или n-n+).

     p                                            p+

                                            

                                                                              WП`

                                                     W`

Ө                                                                

                                                                              WВ`

WВ  W                                      

W< W`
                                                                               

 

 

Высота энергетического барьера для электронов (ННЗ), переходящих из p в p+-область, будет значительной, т.е. в базе (p+-область) не будут накапливаться ННЗ, следовательно, не требуется время на их рассасывание, а значит, повышается быстродействие (переключение прибора, построенного на таком переходе, будет значительно быстрее.)

 Использование двойных гетероструктур (ДГС), таких как p-n-n+ или n-p-p+ позволили получить сверхинжекцию и, тем самым, увеличить коэффициент усиления и повысить КПД.

Применение гетеропереходов:

а) Гетеропереходы n-n+ и p-p+ применяются для создания:

· сверхскоростных интегральных микросхем;

· малошумящих сверхвысокочастотных полевых транзисторов, которые используются в системах спутникового телевидения.

 

б) Свойство односторонней инжекции в p-n гетеропереходе используется для создания биполярных гетероструктурных транзисторов, на основе которых работают усилители в мобильных телефонах.

в) Солнечные элементы на основе гетероструктур широко используются в космосе (космическая станция «Мир» проработала на таких солнечных элементах 15 лет, пока не была затоплена в океане).

 

г) С помощью гетероструктур можно изменять параметры полупроводниковых кристаллов (ширину запрещенной зоны, эффективную массу НЗ и их подвижность, показатель преломления, энергетический спектр и т.д.), т.е. искусственно создавать новые типы полупроводников – гетерополупроводники.

 

Применение лазеров

а) Полупроводниковые лазеры на основе двойных гетероструктур (ДГС), работающие при комнатной температуре, т.е. не требующие охлаждения, стали основой волоконно-оптической связи. Волоконные световоды представляют собой кабели из специального стекла или прозрачной пластмассы и обладают высокой прозрачностью и очень малым затуханием лазерного луча. Если к волоконному световоду присоединить с одного конца полупроводниковый лазер, а с другого – фотоприемник, то получится волоконно-оптическая линия связи. Волоконные световоды позволяют экономить цветные металлы, из которых производятся обычные металлические кабели, имеют малую массу, не подвержены коррозии, не окисляются.      

 

б) Лазер на основе ДГС присутствует почти в каждом доме в виде проигрывателя лазерных компакт-дисков (CD), являясь устройством считывания информации с диска.

в) Лазеры на гетероструктурах используют для преобразования инфракрасного излучения (невидимого) в видимое (например, зеленое).

 

г) Лазерные диоды на основе гетероструктур широко используются в:

· дисплеях;

· современных светофорах;

· устройствах декодирования товарных ярлыков;

· лампах тормозного освещения в автомобилях;

· лазерных указках.

 

д) Лазерные лучи применяются:

  • для точных геодезических измерений;
  • для сварки;
  • для резки сверхпрочных материалов и пробивания отверстий;
  • для изготовления микросхем.

 

е) Лазерное излучение используется:

  • в локаторах, имеющих гораздо бо̀льшую точность, чем радиолокатор;
  • при швартовке судов (лазерный лоцман).

 

ж) На использовании лазерного излучения основана голография (область науки, занимающаяся получением объемных изображений). Примером голографии может служить стереофильм.

 

з) Лазеры эффективно применяются в медицине:

  • в качестве скальпеля (Лазерным скальпелем можно делать «бескровные» операции, т.к. световое излучение попутно еще и «прижигает» кровеносные сосуды. Такой скальпель не требует стерилизации, воздействие его на ткань происходит очень быстро и безболезненно);
  • для лечения глазных болезней (с помощью лазера приваривают к глазному дну отслоившуюся сетчатку, удаляют катаракту, выжигают глазные опухоли, лечат глаукому);
  • в стоматологии лазер используется в качестве бормашины (действует быстрее и безболезненно, избирательно разрушает пораженную кариесом зубную ткань);
  • в терапии (эффективное лечение лазером незаживающих ран, переломов, очищение кровеносных сосудов от холестериновых бляшек и т.д.);
  • в хирургии с помощью лазерного луча дробят камни в почках на мелкие частички, которые выходят естественным путем, не доставляя человеку болезненных ощущений;
  • сверхкороткие импульсы лазерного излучения дают возможность изучать детали строения и функционирования молекул ДНК и, тем самым, влиять на процессы наследственности (с помощью лазерной технологии была получена клонированная овечка Долли);
  • большинство современной диагностической медицинской аппаратуры является лазерной.

 

и) Широкое применение нашли лазеры в военной промышленности:

· приборы ночного видения;

· дальномеры;

· снайперские винтовки;

· ракеты с лазерным наведением;

· В г.Саров запущена лазерная установка «Искра-6», позволяющая моделировать в лабораторных условиях термоядерный взрыв. Таким образом, не надо производить дорогие и опасные для экологии ядерные испытания где-то в океане или под землей, тем более, что наша страна подписала договор о нераспространении ядерного оружия и о прекращении ядерных взрывов. Но изучать, проводить исследования термоядерной реакции в мирных и военных целях мы, в силу действия этого договора, тоже не могли. Теперь этот вопрос решен.

 

к) Активно использует лазеры шоу-бизнес (лазерные шоу).

        

л) С помощью лазеров изучается процесс фотосинтеза в растениях, т.е. преобразование солнечной энергии в химическую.

 

м) Широко распространены лазеры в компьютерной технике (лазерные принтеры, CD - ROM ы) и т.д.

Полупроводниковые диоды

 

Полупроводниковый диод – это прибор с двумя выводами, принцип действия которого основан на использовании свойств p-n перехода.

Обозначение:

                                                      VD

                                                                    Стрелка указывает направление прямого тока . Диод – это несимметричный p-n переход.

Выпрямительный диод

Назначение выпрямительного диода – преобразование переменного напряжения в постоянное.

Работа выпрямительного диода основана на его односторонней проводимости.

Стабилитрон

Стабилитрон – это полупроводниковый диод, у которого обратная ветвь ВАХ используется для стабилизации напряжения.

Рабочим участком стабилитрона является область электрического пробоя, а рабочим напряжением – напряжение пробоя.

В качестве стабилитронов используют кремниевые диоды, обладающие бо́льшей устойчивостью к тепловому пробою.

         Обозначение:              Пример: КС182А

         ВАХ стабилитрона:

                                                       IПР

                                                                                       

                                                                       

                                                                                              

                   UОБР   UСТ НОМ 0     1В     UПР                                                                                    

                                                                                                                                          

                                                          IСТ НОМ                         

                                                                     

                                                                               

                                                              

                                                        IОБР

 

Одним из характерных параметров стабилитрона является температурный коэффициент напряжения стабилизации:

- напряжение стабилизации при температуре ;

- напряжение стабилизации при температуре ;

  - разность температур.

 показывает относительное изменение напряжения стабилизации при изменении температуры на 1К.

 бывают больше и меньше нуля. Обычно используют стабилитроны с , работающие на лавинном пробое.

Иногда в качестве рабочего участка стабилитрона используется прямая ветвь ВАХ, имеющая  - такие стабилитроны называются стабисторами.

Для компенсации температурных изменений последовательно со стабилитроном включают 1 или несколько стабисторов:

             - стабилитрон ( )

             - стабистор ( )    

Созданные по данному принципу стабилитроны называются прецизионными (например, КС191А). Прецизионные стабилитроны обладают высокой температурной стабильностью и высокой точностью стабилизации. Используются они в качестве источников опорного (эталонного) напряжения в цифровых схемах.

Вместо стабистора можно использовать обычный выпрямительный диод, у которого прямая ветвь ВАХ также имеет .

Применение стабилитронов:

· Стабилизаторы напряжений.

· Источники опорного напряжения в цифровых схемах.

Фотодиод

Фотодиоды – это полупроводниковые диоды, преобразующие световую энергию в энергию электрическую.

Обозначение:

Изготавливают фотодиоды из германия и кремния. Работает фотодиод при обратном включении.

Устройство:

P-n переход помещается в металлический корпус со стеклянным окном.

Принцип работы:

Принцип работы фотодиода основан на внутреннем и внешнем фотоэффекте. Когда диод не освещен, в цепи протекает обратный темновой ток небольшой величины . При освещении фотодиода происходит фотогенерация пар НЗ (т.е. возникает внутренний фотоэффект – валентные электроны, получив световую энергию фотонов, переходят из ВЗ в ЗП). Проводимость диода при этом возрастает, следовательно, возрастает обратный ток фотодиода до значения . Разность между световым и темновым токами называется фототоком:

Фотодиод может включаться в схему как с внешним источником питания (фотодиодный режим), так и без него (ве́нтильный режим).

 

(Используется при слабых световых        (Используется при мощных  

потоках)                                                         световых потоках, например,

                                                                     солнечное излучение)

Рассмотрим фотодиодный режим:

                                        p                    n

                                                                                                                

                                 ННЗ Ө                                              

                                                                                                           

                                     ЕВН        ННЗ                                     

                                                                                                       

                                ЕВНЕШН                                                                  

UОБР
                                                                                                     

 

 

а) Пусть имеется поток фотонов с энергией . Образовавшиеся за счет фотогенерации НЗ диффундируют к переходу. Суммарное поле перехода ( ) является ускоряющим для ННЗ, поэтому ННЗ перебрасываются полем в соседние области, образуя световой ток .

б) Пусть освещение перехода отсутствует. В этом случае фотогенерация также будет отсутствовать, поэтому через переход суммарным полем будут перебрасываться в небольшом количестве ННЗ, образованные за счет генерации, и через диод будет протекать темновой ток  небольшой величины.

 Рассмотрим ве́нтильный режим:

В этом режиме будут происходить те же самые процессы, что и в фотодиодном режиме, только переброс ННЗ через переход будет осуществляться исключительно за счет внутреннего поля .

Применение фотодиодов:

· В вычислительной технике фотодиоды используют в устройствах ввода-вывода информации, т.к. фотодиоды обладают хорошей развязкой между входом и выходом (отсутствует электрическая связь между входом и выходом).

· В кино-, фото-аппаратуре.

· В оптронах в качестве фотоприёмников.

· Вентили – в качестве солнечных батарей.

 

Светодиод

Светодиоды – это полупроводниковые диоды, преобразующие электрическую энергию в световую.

Обозначение:                           Пример: АЛ102Б, АЛ307А

Светодиоды работают при прямом включении.

 

Принцип работы:

Под действием прямого напряжения ОНЗ диффундируют в соседние области, где они рекомбинируют с зарядами противоположного знака. Рекомбинация сопровождается переходом электронов из ЗП в ВЗ. При этом выделяется энергия в виде квантов излучения .

                               W(эВ)                                                                                                   

                                           Ө                                                                   

                         WП                                                                                                         

                                                 hv                                                            

                          WВ                                                                                                             

                                                                                                                          

                                                      

Для получения видимого излучения, необходимо, чтобы ширина запрещенной зоны находилась в пределах:  .

Отсюда видно, что германий и кремний для изготовления светодиодов непригодны, т.к. они имеют ширину запрещенной зоны меньшую, чем необходимо для видимого излучения ( ).

Для изготовления светодиодов применяется фосфид галлия ( GaP ), карбид кремния ( SiC ), тройные соединения, называемые твердыми растворами и состоящими из галлия, алюминия и мышьяка ( Ga , Al , As ) или галлия, мышьяка, фосфора ( Ga , As , P ).

 Внесение в полупроводник некоторых примесей позволяет получить свечение различного цвета.

Кроме светодиодов, дающих видимое свечение, используются светодиоды инфракрасного излучения на основе арсенида галлия ( GaAs), у которого . Они применяются в фотореле, различных датчиках, пультах, входят в состав некоторых оптронов.

Конструктивно светодиоды выполняются:

· В непрозрачных корпусах с линзой, обеспечивающей направленное излучение.

· В прозрачном пластмассовом корпусе, создающем рассеянное излучение.

· В бескорпусном варианте.

Применение:

Индикация, реле, датчики, пульты.

 

Транзисторы

Биполярные транзисторы

Биполярный транзистор – это полупроводниковый прибор с двумя взаимодействующими p-n переходами и тремя выводами.

 

Биполярным транзистор называется потому, что его работа основана на использовании носителей заряда обоих знаков (электронов и дырок).

 

Биполярные транзисторы бывают p-n-p и n-p-n проводимости. В транзисторах p - n - p проводимости стрелка направлена к базе, основными носителями заряда являются дырки. В транзисторах n - p - n проводимости стрелка направлена от базы, основными носителями заряда являются электроны. И в том, и в другом случае стрелка указывает направление эмиттерного тока.

Обозначение:

 

Если транзистор рассматривать как узловую точку, тогда справедлив 1-й закон Кирхгофа (сумма входящих токов равна сумме выходящих), т.е.:

 

  – основное уравнение транзистора

Из этого выражения вытекает: - это максимальный ток транзистора.

                                         

 Назначение областей транзистора

H -параметры

Недостаток первичных параметров – невозможность их измерения, т.к. общая точка, относительно которой определяются первичные параметры, находится внутри Базы транзистора.

Поэтому переходят к вторичным параметрам транзистора, которые легко измерить. Самыми распространенными вторичными параметрами транзистора являются h-параметры.

В системе h-параметров в качестве независимых переменных (аргументов) принимают входной ток ( I 1 ) и выходное напряжение ( U 2 ). Зависимыми переменными (функциями) являются входное напряжение ( U 1 ) и выходной ток ( I 2 ).

Связь между зависимыми и независимыми переменными выражается с помощью системы уравнений:

U1 = h11I1 + h12U2

I2 = h21I1 + h22U2     

Здесь I1, I2, U1, U2 – амплитуды переменных токов и напряжений (индекс «1» относится к входному сигналу, а индекс «2» - к выходному), h11, h12, h21,h22 являются коэффициентами пропорциональности (индекс «11» означает 1-я строчка, 1-й столбец; «12» - 1-я строчка, 2-й столбец и т.д.)

         Таким образом, имеем систему 2-х уравнений с четырьмя неизвестными. Решить такую систему уравнений в общем виде невозможно. Для ее решения необходимы дополнительные условия.

Так, например, чтобы определить из первого уравнения h11, нужно второе слагаемое этого уравнения занулить, т.е. считать, что U2=0.

Тогда при - входное сопротивление транзистора при короткозамкнутом выходе.

Аналогично определяем:

при  - коэффициент обратной связи по напряжению при разомкнутом входе;

при  - коэффициент усиления по току при короткозамкнутом выходе;

при  - выходная проводимость транзистора при разомкнутом входе.                

Пример расчета h -параметров транзистора ОЭ

Изобразим транзистор ОЭ с его входными и выходными токами и напряжениями:

а) Определим входное сопротивление транзистора. Для этого запишем формулу: при . Заменив амплитуды на малые приращения и подставив значения входного тока, входного и выходного напряжений конкретно для транзистора ОЭ, получим: при ,т.е. при

индекс «э» означает, что транзистор собран по схеме ОЭ      

Входное сопротивление транзистора определяется по входным вольт-амперным характеристикам. Точка А – это рабочая точка, в которой определяются h-параметры.

                             Iб (mA)              

                   0,75                      Uкэ=5В                           

                             

                                                             

                   б                      

                                                 =

                         

                  0,25                                       Uбэ (В)                                                                         

                                                                                            

                                     0,3  бэ 0,55

Чтобы определить , необходимо выполнить дополнительное построение: это построение обязательно должно проходить через рабочую точку А и при этом должно выполняться условие  (в данном случае ). Исходя из вышесказанного, строим небольшой прямоугольный треугольник таким образом, чтобы его гипотенуза прилегала к входной характеристике и делилась рабочей точкой А пополам. Тогда катеты этого треугольника и будут искомыми значениями  и , зная которые, легко определить входное сопротивление транзистора:

б) Определим коэффициент обратной связи по напряжению.

Заменив в формуле при  амплитуды на малые приращения, получим: при , т.е. при .

Коэффициент обратной связи по напряжению определяется по входным вольт-амперным характеристикам транзистора. Дополнительное построение должно проходить через рабочую точку А и при этом должно выполняться условие . В данном случае это будет прямая, параллельная осинапряжений и проходящая через точку А.

                             Iб(mA)

                                             кэ

                                   Uкэ=0         Uкэ=5В

                                                               

                                       А`  А

 

 

                                                                         Uбэ(В)

                                  0,5 бэ 0,7                                         

 

в)Определим коэффициент усиления по току.

Заменив в формуле при  амплитуды на малые приращения, получим: при , т.е. при .

Коэффициент усиления по току определяется по выходным вольт-амперным характеристикам транзистора. Дополнительное построение должно проходить через рабочую точку А и при этом должно выполняться условие . В данном случае это будет прямая, параллельная оси токов и проходящая через точку А.

                  Iк(mA)

                                                                    

 

          40                                         Iб=1,5mA

                                             А

                                                          Iб=1mA 

      к                                      б

                                                          Iб=0,5mA   

          20                                          Iб=0

                                                                                 Uкэ(В)  

 

Для транзистора, собранного по схеме ОЭ: , где - коэффициент передачи тока базы в коллектор.

г) Определим выходную проводимость и выходное сопротивление транзистора.

Заменив в формуле при  амплитуды на малые приращения, получим: при , т.е. при .

Дополнительное построение должно проходить через рабочую точку А и при этом должно выполняться условие . В данном случае это будет прямоугольный треугольник, у которого гипотенуза делится рабочей точкой А пополам.

                         Iк(mA)

                                                                              

                                                                       Iб=1mA

                      7

                                                   A            Iб=0,5mA   

           к                                                  

                      6                                          Iб=0

                                                                                   Uкэ(В)

                                 5     кэ     10

;

Примечание:

· Чтобы перенести рабочую точку А с входных характеристик на выходные, необходимо определить ток базы в рабочей точке ( I БА ). Затем на выходных характеристиках выбирают характеристику, соответствующую этому току. Точка пересечения выбранной характеристики и перпендикуляра, соответствующего указанному на входных характеристиках рабочему значению напряжения U КЭ , и даст положение рабочей точки на выходных ВАХ.

· Чтобы перенести рабочую точку А с выходных характеристик на входные, необходимо определить ток базы в рабочей точке ( I БА ). Затем на входных характеристиках на оси токов отмечают это значение и через полученную точку проводят прямую, параллельную оси напряжений, до пересечения с рабочей входной характеристикой. Точка пересечения и даст положение рабочей точки на входных ВАХ.

 

Полевые транзисторы

Полевые транзисторы – это полупроводниковые приборы с управляемым каналом для тока ОНЗ.

Полевой транзистор содержит 3 электрода:

· Исток – электрод, через который в канал втекают НЗ, создающие ток канала;

· Сток – электрод, через который НЗ вытекают из канала;

· Затвор – управляющий электрод, регулирующий поток НЗ в канале.

Полевой транзистор относится к однополярным транзисторам, т.к. в нем используется движение НЗ только одного знака (через канал движутся либо электроны, либо дырки).

НЗ в полевом транзисторе движутся от Истока к Стоку через канал под действием продольного электрического поля, создаваемого напряжением .

Затвор управляет величиной тока канала с помощью поперечного электрического поля, создаваемого напряжением .

Наличие этих 2-х полей объясняет название “полевой транзистор”.

Полевые транзисторы бывают:


 


     
С наведенным каналом
 
Со встроенным каналом

 

 





МОП – транзисторы

МОП-транзисторы были разработаны в 1962г. В отличие от полевого транзистора с p-n затвором, у МОП транзистора Затвор изолирован слоем диэлектрика, в результате чего входное сопротивление МОП-транзисторов очень велико (достигает величины 1014 Ом) – достоинство.

МОП ТЛ (ИЛИ-НЕ)

Транзисторы  соединены параллельно.

- динамическая нагрузка (открыт всегда). Сопротивление этого МОП-транзистора играет роль нагрузочного резистора. При этом увеличивается плотность компоновки, все элементы создаются в едином технологическом цикле, что уменьшает время разработки ИМС и ее стоимость – достоинство.

 

 

а) Пусть . Транзисторы  будут закрыты, т.к. каналы в них не образуются. Сопротивления закрытых транзисторов велики. Т.к. транзисторы соединены параллельно, их общее сопротивление также будет велико, следовательно, велико будет и падение напряжения на нем, т.е. на выходе установится высокий потенциал: .

 

б) Пусть . При этом транзисторы  будут открыты, т.к. в них образуются каналы. Сопротивления открытых транзисторов малы, общее сопротивление их также будет мало, следовательно, мало будет и падение напряжения на нем, т.е. на выходе установится низкий потенциал: .

 

в) Пусть . При этом  открыт (в нем образуется канал), сопротивление его мало.  закрыт (канал в нем не образуется), его сопротивление велико. Общее сопротивление при параллельном соединении будет меньше меньшего, т.е. мало, следовательно, мало будет и падение напряжения на нем, т.е. на выходе установится низкий потенциал: .

Таким образом, схема выполняет операцию ИЛИ-НЕ.

МОП ТЛ (И-НЕ)

Транзисторы  соединены последовательно.

- динамическая нагрузка (открыт всегда).

0 0 1
0 1 1
1 0 1
1 1 0

а) Пусть . Транзисторы  будут закрыты, т.к. каналы в них не образуются.

Сопротивления закрытых транзисторов велики. Т.к. транзисторы соединены последовательно, их общее сопротивление, равное сумме этих сопротивлений, будет велико, следовательно, велико будет и падение напряжения на нем, т.е. на выходе установится высокий потенциал: .

 

б) Пусть . При этом транзисторы  будут открыты, т.к. в них образуются каналы. Сопротивления открытых транзисторов малы, общее сопротивление их также будет мало, следовательно, мало будет и падение напряжения на нем, т.е. на выходе установится низкий потенциал: .

 

в) Пусть . При этом  открыт (в нем образуется канал), сопротивление его мало.  закрыт (канал в нем не образуется), его сопротивление велико. Общее сопротивление при последовательном соединении будет велико, следовательно, велико будет и падение напряжения на нем, т.е. на выходе установится высокий потенциал: .

Таким образом, схема реализует операцию И-НЕ.

9.3 Комплементарная МОП-транзисторная логика (КМОП-ТЛ)

Пара транзисторов называется комплементарной, если они обладают одинаковыми параметрами, но разной проводимостью.

 

 Основой КМОП ТЛ является инвертор.

КМОП-ТЛ (ИЛИ-НЕ)

 и  соединены последовательно, - параллельно.

Затворы  и ,  и  соединены.

0 0 1
0 1 0
1 0 0
1 1 0

а) Пусть .  открыты (каналы образуются),  закрыты (каналы не образуются). Сопротивления закрытых транзисторов велики, общее сопротивление параллельно соединенных  также будет велико, следовательно, велико будет и падение напряжения на нем, т.е. на выходе установится высокий потенциал: .

б) Пусть .  закрыты (каналы не образуются),  открыты (каналы образуются). Сопротивления открытых транзисторов  малы, общее их сопротивление также мало, следовательно, мало и падение напряжения на нем, т.е. на выходе установится низкий потенциал: .

 

в) Пусть .  открыты (каналы образуются),  закрыты (каналы не образуются). Сопротивление открытого  мало, сопротивление закрытого  велико. Общее их сопротивление будет меньше меньшего, т.е. мало, следовательно, мало будет и падение напряжения на нем, поэтому на выходе установится низкий потенциал: .

Таким образом, схема осуществляет операцию ИЛИ-НЕ.

КМОП-ТЛ (И-НЕ)

 соединены параллельно,  - последовательно.

0 0 1
0 1 1
1 0 1
1 1 0

 

а) Пусть .  открыты (каналы образуются),  закрыты (каналы не образуются). Сопротивления закрытых транзисторов велики, общее сопротивление последовательно соединенных  также будет велико, следовательно, велико будет и падение напряжения на нем, т.е. на выходе установится высокий потенциал: .

б) Пусть .  закрыты (каналы не образуются),  открыты (каналы образуются). Сопротивления открытых транзисторов  малы, общее их сопротивление также мало, следовательно, мало и падение напряжения на нем, т.е. на выходе установится низкий потенциал: .

в) Пусть .  открыты (каналы образуются),  закрыты (каналы не образуются). Сопротивление открытого  мало, сопротивление закрытого  велико. Общее их сопротивление будет велико, следовательно, велико будет и падение напряжения на нем, поэтому на выходе установится высокий потенциал: .

 

Таким образом, схема осуществляет операцию И-НЕ.

 

Преимущества КМОП ТЛ перед МОП ТЛ:

· Малое напряжение питания

(Т.к. один из транзисторов всегда находится в закрытом состоянии, то через каскад протекают только малые токи утечки, следовательно, потребляемая мощность мала, т.е. можно использовать малое напряжение питания.)

· Более высокое быстродействие.

 

10 Усилительные устройства

Структурная схема усилителя

Устройство, предназначенное для усиления мощности электрических сигналов, называется усилителем.

Т.к. мощность сигнала на выходе усилителя (по определению) больше, чем на входе, то по закону сохранения энергии усилитель должен включать в себя источник энергии. Таким источником энергии является источник питания.

Энергия источника питания в усилителе преобразуется в энергию усиленных колебаний под действием небольшой энергии источника сигнала, в качестве которого могут выступать: генератор, микрофон, фотоэлемент, выходной сигнал предыдущего каскада и т.д.

Потребителем энергии усиленного сигнала является нагрузка (например, акустическая система, электронно-лучевая трубка, входное сопротивление следующего каскада).

В качестве усилительного элемента может выступать транзистор, лампа, некоторые виды диодов и т.д.

Таким образом, структурная схема усилителя имеет вид:

 

Источник  сигнала
Усилительный   элемент
Нагрузка
                           PВХ                                                     PВЫХ

 

Источник питания
                                                                                

 

                                               РВЫХ> P ВХ

Усиление – это нелинейное преобразование, при котором энергия источника питания преобразуется в энергию усиленных колебаний, закон изменения которых определяется законом изменения входного сигнала.

 

Классификация усилителей

1. По форме усиливаемых сигналов усилители делятся на:

· аналоговые усилители (усиливают непрерывные во времени сигналы);

· импульсные усилители (усиливают импульсные сигналы).

 

2. По диапазону усиливаемых частот:

· усилители постоянного тока (УПТ) – усиливают постоянный и медленно меняющийся во времени ток;

· усилители переменного тока (усиливают переменный ток).

 

В свою очередь усилители переменного тока подразделяются по полосе усиливаемых частот на:

а) широкополосные усилители (ШПУ);

б) узкополосные (резонансные) усилители.

 

По диапазону усиливаемых частот усилители переменного тока делятся на:

а) НЧ усилители;

б) СЧ усилители;

в) ВЧ усилители;

г) СВЧ усилители.

 

3. По уровню выходной мощности усилители делятся на:

· усилители малой мощности;

· усилители мощности.

 

4. В зависимости от нагрузки усилители бывают:

· резистивные;

· трансформаторные;

· резонансные.

 

5. В зависимости от межкаскадных связей:

· RC-усилители;

· с трансформаторной связью;

· с непосредственной связью (выход одного каскада непосредственно связан со входом другого).

 

6. По типу усилительного элемента:

· транзисторные усилители;

· ламповые;

· параметрические;

· магнитные;

· квантовые и т.д.

Коэффициенты усиления

Коэффициенты усиления показывают, во сколько раз сигнал на выходе усилителя больше сигнала на входе.

Существуют 3 вида коэффициентов усиления.

1. Коэффициент усиления по мощности:  [раз]   

2. Коэффициент усиления по току:   [раз]  

3. Коэффициент усиления по напряжению:   [раз]  

Линейные искажения

Линейные искажения возникают за счет наличия в схеме частотно-зависимых линейных элементов – индуктивностей и емкостей ( ; ).

Введем понятие «амплитудно-частотная характеристика» (АЧХ).

Нелинейные искажения

Динамический диапазон

Динамический диапазон усилителя определяют по амплитудной характеристике (АХ).

Собственные шумы усилителя

Усилитель усиливает не только полезный сигнал, но и нежелательные колебания, возникающие внутри него, называемые собственными шумами или помехами.                  

Основные шумы:

1. Фон – это колебания с частотой питающей сети (50Гц) или кратной ей. Возникают за счет плохой фильтрации выпрямителей. Избавиться от этих помех можно, используя качественный выпрямитель.

2. Наводки – помехи, обусловленные действием электро-магнитных полей. Избавиться от этих помех можно с помощью экранирования.

3. Микрофонный эффект – преобразование механических колебаний элементов схемы в электрические, проходящие на выход усилителя. Избавиться от этих помех можно с помощью амортизатора.

Таким образом, с указанными выше шумами можно эффективно бороться.

4. Тепловые шумы – обусловлены наличием хаотического теплового движения НЗ внутри любого проводника или элемента схемы. Эти шумы трудно устранимы.

Наиболее сильно сказываются шумы первого каскада, т.к. усиливаются всеми последующими каскадами.

Количественно шумы оцениваются отношением сигнал/шум:

.

В усилителях высокого класса отношение:                      .

Обратная связь в усилителях

Передача части мощности сигнала с выхода усилителя на его вход называется обратной связью.

Структурная схема усилителя с ОС:

        Вх.                                              

                                                                                        Вых. 

                                                              

                                                

                                                    

– коэффициент усиления усилителя без цепи ОС

        – коэффициент передачи цепи обратной связи

Произведение  называют петлевым усилением, а замкнутый контур, образованный усилителем и цепью ОС – петлей обратной связи.

Выражение  называют глубиной ОС.

Виды обратной связи

Обратная связь, созданная специально для улучшения технических показателей усилителя, называется искусственной ОС.

Обратная связь, возникшая самопроизвольно (через паразитные емкости, общий источник питания и т.д.), называется паразитной ОС. Эта связь нежелательна, ее стараются устранить.

Если напряжение обратной связи совпадает по фазе с входным напряжением, связь называется положительной. Положительная обратная связь (ПОС) применяется в генераторах.

Если напряжение обратной связи противофазно входному напряжению, связь называется отрицательной. Отрицательная обратная связь (ООС) применяется в усилителях.

Как видно из рисунка, уменьшение коэффициента усиления по напряжению усилителя с ООС сопровождается расширением полосы пропускания, т.е. уменьшением линейных (амплитудно-частных) искажений, что является достоинством.

Эмиттерная стабилизация

Стабилизирующим элементом в этой схеме является резистор .

Принцип работы:

С ростом температуры все токи транзистора увеличиваются, рабочая точка (РТ) смещается вверх по нагрузочной прямой – режим работы усилителя нарушается.

Но с ростом тока эмиттера  растет падение напряжения U Э на резисторе  ( ), что приводит к уменьшению напряжения смещения .

2-й закон Кирхгофа для участка цепи:

                                                                  с onst

                                        (слабо зависит от температуры)

 

Уменьшение напряжения смещения сопровождается закрыванием транзистора, в результате чего все токи его уменьшаются, т.е. РТ возвращается в исходное состояние – режим стабилизируется.

В схеме действует ООС по току за счет наличия резистора , который относится и к входной и к выходной цепям одновременно, в результате чего часть мощности выходного сигнала поступает на вход схемы. Причем, через этот резистор протекает как постоянный, так и переменный токи, т.е. действует ООС как по постоянному, так и по переменному токам.

ООС по постоянному току желательна, т.к. за счет нее происходит стабилизация рабочего режима.

ООС по переменному току нежелательна, т.к. происходит потеря на

резисторе  переменного (полезного) напряжения, что ведет к уменьшению коэффициента усиления по напряжению .

Для уменьшения ООС по переменному току параллельно  подключают конденсатор  большой емкости.

Чтобы переменный ток не протекал через , необходимо выполнение условия: . Если это неравенство выполняется, то тогда переменный ток будет протекать через конденсатор , т.е. нежелательные потери полезного сигнала будут минимальны.

Таким образом, роль блокировочного конденсатора  - исключить (уменьшить) ООС по переменному току. Другими словами: блокировочный конденсатор  обеспечивает нулевой потенциал эмиттера для переменного тока.

Коллекторная стабилизация

Стабилизирующими элементами в данной схеме являются резисторы .                                           Принцип работы:

С ростом температуры все токи транзистора увеличиваются, рабочая точка (РТ) смещается вверх по нагрузочной прямой – режим работы усилителя нарушается.

Но рост токов  и  сопровождается ростом падения напряжения на резисторе , что приводит к уменьшению выходного напряжения .

2-й закон Кирхгофа для выходной цепи:

                     

const                     

В схеме присутствует ООС (за счет наличия ). Т.к. выходное напряжение уменьшилось, то уменьшится и напряжение обратной связи , поскольку оно является частью выходного напряжения, что, в свою очередь, приведет к уменьшению тока : ( ;     )

 Если один из токов транзистора уменьшается, то автоматически уменьшаются и два других тока (в данном случае ):

;

Таким образом, РТ возвращается в исходное положение – режим работы усилителя стабилизируется.

Анализ АЧХ ШПУ

Рассмотрим ШПУ с эмиттерной стабилизацией:


- входное сопротивление следующего каскада. Если следующий каскад точно такой же, то .

, где

- паразитная емкость нагрузки;

- выходная емкость данного каскада;

- входная емкость следующего каскада.

АЧХ такого усилителя: КU                             идеальная АЧХ

                               КU0             

                                      

                                                                                         реальная АЧХ

                                                                            

                                   0                                             f

На средних частотах АЧХ реального и идеального усилителя совпадают, т.е. амплитудно-частотные искажения (АЧИ) отсутствуют. На нижних и верхних частотах наблюдаются завалы АЧХ, говорящие о присутствии АЧИ.

Факторы, оказывающие влияние на АЧХ в области НЧ и ВЧ:

· частотные свойства самого транзистора;

· наличие элементов схемы, обладающих реактивным сопротивлением (в данном случае – это );

· наличие паразитной емкости нагрузки .


Резонансные усилители

Основой резонансных усилителей является схема ШПУ, где вместо сопротивления коллекторной нагрузки ( K) включается колебательный контур.

Многоконтурный РУН

Недостаток усилителя с одиночным контуром – невозможность получения требуемой избирательности при заданной ПП (получая заданную ПП, мы проигрываем в избирательности).

Выход: использование многоконтурных резонансных систем, у которых ПП зависит не только от добротности колебательных контуров, но и от степени связи между контурами.

Многоконтурные резонансные системы широко используются в усилителях промежуточной частоты (УПЧ).

УПЧ с полосовым фильтром

     М

 

М- коэффициент взаимоиндукции

Полосовой фильтр (ПФ) – система из нескольких контуров, связанных между собой индуктивной или емкостной связью.

Контуры слегка расстроены относительно резонансной частоты .

Обычно применяют частичное включение контуров, что снижает коэффициент усиления, но повышает добротность и избирательность.

АЧХ такого усилителя :

                                                         КU

                                                                      КUO                                                 

                                                                      0,707КUО                                          

                                                   

                                                                                                 

                                                                                                                   

fПР
                               f   

ПП
                                                                     

                                                             

                   

Число горбов равно числу контуров

Применение связанных колебательных контуров повышает избирательность (АЧХ стремится к «П»-образной форме), но уменьшает КU (т.к. происходит потеря энергии при передаче ее из одного контура в другой).

Введем понятие «коэффициент прямоугольности». Коэффициентпрямоугольности – это отношение полосы пропускания на уровне 0,1 к полосе пропускания на уровне 0,7:   > 1 .

Чем ближе КП к 1, тем ближе резонансная характеристика к идеальной, которая выглядит:

                                                   КU

 

                                                              

                                                 fПР            f

Связь между контурами считается оптимальной, если провал характеристики достигает уровня 0,707 от максимального значения KUO. В этом случае и КП 1 и KU имеет достаточно большое значение.

Дрейф нуля

Общий недостаток всех УПТ прямого усиления – нестабильность нуля.

Должно выполняться:  при . Реально это не выполняется.

 

Медленное произвольное изменение постоянного выходного напряжения при отсутствии входного называется дрейфом нуля.

Основные причины дрейфа нуля:

1. Изменение температуры окружающей среды (температурный дрейф).

2. Старение элементов и связанное с этим изменение их параметров.

3. Нестабильность напряжения ИП и др.

Дрейф нуля содержит монотонную медленно меняющуюся составляющую  и случайные отклонения от неё – флуктуации.

                                                         U ДР=

                               

                                                                                            

 

                              0                                                    t (время)

возникает за счёт 1 и 2 причины,   возникает за счёт 3 причины. Основная доля дрейфа нуля обусловлена первым каскадом (из-за последующего усиления). В усилителях переменного тока дрейф нуля отсутствует, т.к. цепи межкаскадной связи (конденсаторы, трансформаторы) не пропускают постоянное или медленно меняющееся напряжение на вход следующего каскада.

Дрейф нуля – явление нежелательное, т.к. он не отличим от усиливаемого полезного сигнала, искажает его и может недопустимо изменить режим работы всего усилителя.

Меры по уменьшению дрейфа нуля:

1. Применение в первых каскадах двухтактных УПТ – дифференциальных усилителей.

2. Использование общей глубокой ООС.

3. Применение эмиттерной + параметрической стабилизации.

4. Стабилизация напряжения ИП.

5. Предварительный прогрев схемы или термостатирование (помещение в термостат).

6. Применение УПТ с преобразованием частоты входного сигнала.

(Медленно меняющееся напряжение преобразуется в переменное с помощью модулятора, затем усиливается усилителем переменного тока. Далее происходит обратный процесс (демодуляция) – сигнал выпрямляется с помощью выпрямителя.  

                                                                        

                                                                                                                         

 

                    

,                                                                                                   

 

                  

 

                                                                                     

 

 

                             

                       

 

                                                                                 

 

 

Усилитель переменного тока дрейфа нуля не создаёт. Дрейф, в основном, определяется балансным модулятором и составляет очень малую величину - десятые доли мкВ/град).

 

Операционные усилители (ОУ)

ОУ – это интегральная микросхема представляющая собой многокаскадный усилитель постоянного тока с дифференциальным входным каскадом, большим коэффициентом усиления и глубокой ООС.

Термин «ОУ» возник от первоначального назначения этих усилителей – выполнение математических операций. На основе ОУ можно выполнить более 200 преобразований над сигналами.

Современные ОУ состоят, как правило, из 3-х каскадов, например:

1 каскад – дифференциальный каскад с большим  и несимметричным выходом.

2 каскад – усилитель, собранный по схеме ОЭ.

3каскад – двухтактный бестрансформаторный УМ на комплементарной паре.

Обозначение ОУ:

                                      

                                  ∞                       

                                                           

                                                     +Еп

                                               -Еп

                            

                             основное поле дополнительное поле

Равносторонний треугольник на основном поле указывает направление передачи сигнала. Знак  означает высокий .

Вход 1 называется инвертирующим (сигнал с него передается на выход                  

ОУ с изменением фазы на 180 градусов).

Вход 2 – не инвертирующий (сигнал с него передаётся на выход ОУ без   

изменения фазы).

На дополнительном поле указываются выводы питания, корпуса, балансировки нуля, коррекции.

Параметры ОУ

1.Коэффициент усиления дифференциального сигнала (часто этот коэффициент называется просто «коэффициент усиления»):

( ,т.е. очень велик).

2. Коэффициент ослабления синфазного сигнала:       , где

 - коэффициент усиления синфазного сигнала

  ,т.е. велик)

3. Входное сопротивление ОУ.  Это сопротивление большое (до десятков÷сотен МОм). Оно обеспечивает поступление на вход ОУ полезного сигнала ( ) практически без потерь – достоинство.

4. Выходное сопротивление ОУ  определяется схемой оконечного каскада. Оно мало ( ), поэтому всё выходное напряжение передаётся в нагрузку практически без потерь – достоинство.

5. Полоса пропускания ПП = (0 ÷ десятки) МГц, т.е. велика.

Вывод : по своим параметрам ОУ приближается к идеальному.

 

Т.к. ОУ имеет большой коэффициент усиления, то даже малое постоянное дифференциальное входное напряжение, вызванное асимметрией схемы (например, из-за разброса параметров) приведёт к появлению на выходе недопустимо большого постоянного напряжения, что вызовет перегрузку усилителя.

Чтобы этого избежать, в ОУ применяется глубокая внешняя ООС.

Инвертирующий ОУ

Название говорит о том, что входной сигнал подаётся на инвертирующий вход, не инвертирующий вход заземлён. Напряжение обратной связи ( ) также должно подаваться на инвертирующий вход (иначе ОС будет положительной, что недопустимо).

                             Выводы питания и корпуса опущены.

Считаем, что ОУ близок к идеальному: ; ; .

Пусть на входе положительный потенциал, т.е.  > 0.

Рассмотрим . Дробь стремится к бесконечности, если числитель стремится к бесконечности или знаменатель стремится к 0.

 к бесконечности стремиться не может, т.к. ограничивается напряжением источника питания, следовательно,  0.

Это означает, что потенциал точки А совпадает с потенциалом точки В и будет равен 0, т.к.точка В имеет нулевой потенциал (соединена с корпусом): ( , т.е. ).

Таким образом, через резистор  ток  течёт слева направо (от бо́льшего потенциала к меньшему). Т.к. , то этот ток будет течь через резистор , минуя усилитель. Поскольку потенциал , а ток течет от большего потенциала к меньшему, то  < 0.

Таким образом, произошла инверсия входного сигнала (на входе положительный потенциал, на выходе – отрицательный), отсюда и название ОУ – инвертирующий.

Во входной и выходной цепях протекает один и тот же ток , поэтому можно записать:    (*)

   

2-й закон Кирхгофа: , т.к. , то ,

т.е. все входное напряжение падает на .                                                 

Т.к. , то все выходное напряжение падает на .    

Минус в выражении (*) стоит потому, что выходное напряжение противофазно входному.

Из выражения (*) находим: .

Учитывая, что: , получаем , где  - коэффициент усиления инвертирующего ОУ.

Резистор  служит для компенсации сдвига нуля на выходе ОУ (для компенсации дрейфа), вызванного токами смещения.

Не инвертирующий O У

Входной сигнал подаётся на не инвертирующий вход ОУ, напряжение ОС через делитель  - на инвертирующий вход (иначе ОС будет положительной, что недопустимо).


Считаем, что ОУ близок к идеальному: ( ).

Пусть на входе положительный потенциал, т.е.  Коэффициент усиления будет стремиться к бесконечности при условии, что , т.к. выходное напряжение ограничено напряжением источника питания и стремиться к бесконечности не может ( ). Это означает, что потенциал точки А совпадает с потенциалом точки В:

Т.к. потенциал точки Д  (корпус), а ток течёт от большего потенциала к меньшему, то через резистор  ток  будет протекать справа налево. Естественно предположить, что этот ток поступает на резистор  с выхода через резистор , минуя ОУ (т.к. ). Отсюда делаем вывод: , т.е. .

Таким образом, инверсии не произошло: выходное напряжение совпадает по фазе с входным, отсюда и название ОУ – не инвертирующий.

    

С учётом того, что входное и выходное напряжения определяются относительно корпуса и ток во входной и выходной цепях протекает один и тот же, можно записать:

 

                        (**) 

Все входное напряжение падает на , т.к. , а .

Все выходное напряжение падает на ( ), т.к. .

Из выражения (**) находим: .

Учитывая, что , получаем ,

где  - коэффициент усиления не инвертирующего ОУ.

 

Литература

1 Аксенов А.И., Нефедов А.В. Отечественные полупроводниковые приборы.

Справочное пособие.- М.: Салон-пресс, 2014. – 525с.

 

2 Берикашвили В.Ш., Черепанов А.К. Электронная техника. – М.: Академия, 2014. – 336с.

 

3 Гальперин М.В. Электронная техника. – М.:ИД «ФОРУМ» - Инфра-М, 2014.- 351с.

 

4 Полищук В.И. Задачник по электронике. М.: Академия, 2013. – 156с.

 

5 Сиренький И.В., Рябинин В.В., Голощапов С.Н. Электронная техника. Из-во Питер, 2014. – 416с.

6 В.И.Галкин, Е.В.Пелевин Промышленная электроника и микроэлектроника,

М.: Высшая школа, 2014-350с.

 

7 studentbank.ru/view.php?id=42336

 

8 review3d.ru/elektronika-kurs-lekci

 

9 fanknig.org/book.php?id=24206316

 

10 padabum.com › Электроника‎

 

 

КОНСПЕКТ ЛЕКЦИЙ

(3,4 семестр)

 

для студентов 1 курса

 

 

специальности 11.02.02  Техническое обслуживание и ремонт

                                       радиоэлектронной техники (по отраслям)                          

 

 

г. Нижний Новгород

 

2017г.

 

Содержание

1 Основы зонной теории …………………………………………….3

2 Внутреннее строение полупроводников………………………….5

3 Контактные явления………………………………………………..7

4 Внутренний и внешний фотоэффект……………………………..16

5 Буквенно-цифровое обозначение диодов, транзисторов……....18

6  Лазеры……………………………………………………………...21

7  Полупроводниковые диоды……………………………………...26

8  Транзисторы……………………………………………………….32

9  Интегральные микросхемы логических элементов…………….50

10 Усилительные устройства……………………………………….57

   Литература…………………………………………………….…….90

 

1 Основы зонной теории

Классификация твердых тел по проводимости

 

Все вещества состоят из атомов. Атом, в свою очередь, состоит из более мелких частиц: протонов, электронов, нейтронов.

Протоны имеют положительный электрический заряд, электроны – отрицательный, нейтроны – электрически нейтральны (их заряд равен нулю).

Протоны и нейтроны образуют ядро атома, вокруг которого по определенным орбитам вращаются электроны.

Атом является электрически нейтральным (положительный заряд ядра нейтрализуется отрицательными зарядами электронов).

Каждой орбите соответствует определенная энергия: потенциальная и кинетическая. Потенциальная – за счет нахождения электрона на некотором расстоянии от ядра, кинетическая – за счет движения электрона.

На орбите электрон удерживается за счет силы притяжения к ядру. Чтобы удалить электрон от ядра, необходимо преодолеть их взаимное притяжение, т.е. затратить некоторую энергию. Поэтому электроны, находящиеся на внешних (более удаленных) орбитах, обладают большей энергией, чем электроны, находящиеся на внутренних орбитах.

 , где - энергия

 

Электроны, находящиеся на внешних орбитах атомов, называются валентными.

Они определяют химическую активность вещества – валентность (если на внешней орбите атома какого-то вещества находятся 4 валентных электрона, то это вещество является четырехвалентным).                                                   

При сообщении дополнительной энергии (тепловой, световой, радиационной и т.д.) валентные электроны могут покинуть свою орбиту.

Освободившиеся от внутриатомных связей электроны называются свободными.

При возникновении свободного электрона нарушается электрическая нейтральность атома – появляется положительный ион.

Процесс образования ионов называется ионизацией.                                              

При отсутствии электрического поля свободные электроны движутся хаотически. При наличии электрического поля движение свободных электронов становится упорядоченным, направленным – возникает электрический ток.

Электрический ток – это направленное движение носителей заряда (НЗ).

Чем больше свободных электронов имеет вещество, тем выше его электропроводность, т.е. способность вещества проводить электрический ток.

 

По степени электропроводности твердые тела делятся на: проводники, полупроводники, диэлектрики.

 

1.2 Энергетическая диаграмма твердого тела

В 1890г. Планк выдвинул гипотезу, согласно которой электроны в атоме не могут обладать произвольной энергией.

Каждой орбите соответствует строго определенная энергия электрона – так называемый разрешенный энергетический уровень.

 

Энергия, которой не может обладать электрон, соответствует запрещенному энергетическому уровню.

Все это относится к одному изолированному атому. Но твердое тело состоит из множества атомов, которые расположены настолько близко друг к другу, что на электроны влияет не только ядро собственного атома, но и ядра соседних атомов.

В результате взаимодействия многих атомов происходит расщепление энергетических уровней на подуровни - возникают энергетические зоны.

Совокупность энергетических уровней свободных электронов образует  зону проводимости (ЗП).

 

Совокупность энергетических уровней валентных электронов образует валентную зону (ВЗ).

 

Энергетический промежуток, не содержащий энергетических уровней, называется запрещенной зоной.

Энергетическая диаграмма твердого тела выглядит:

                                                                                                                  

                     

                                 Зона проводимости                                                                                             

                                                                                                                                 

                                       - запрещенная зона                                                                                                                     

                        Валентная зона                                

                                                                  (безразмерная величина)

 – это энергия, которую приобретает электрон, пройдя разность потенциалов в .

Ширина запрещенной зоны ( ) определяет минимальную энергию, необходимую для перехода электрона из валентной зоны в зону проводимости.

 

Ширина запрещенной зоны влияет на электропроводность:

1) если  - данное вещество является диэлектриком;

2) если  - данное вещество является полупроводником;

3) если  - данное вещество является проводником.

 

 Таким образом, в проводнике запрещенная зона отсутствует.

 


Дата: 2018-11-18, просмотров: 507.