Критические периоды в развитии иммунной системы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Онтогенез иммунной системы

 

                                       Иммунная система в эмбриогенезе

       Уровень иммунной реактивности развивающихся зародышей значительно уступает половозрелым особям. Тем не менее, начальные этапы становления T- и B-звеньев иммунной системы проявляются очень рано. Тимус — наиболее ранний орган иммунной системы, возникающий в процессе зародышевого развития. Формируется из эндодермы 3-го и 4-го глоточных карманов и эктодермы 3-й и 4-й жаберных щелей. Развивающийся тимус характеризуется интенсивной клеточной пролиферацией и увеличением массы органа. Отношение массы тимуса к массе тела достигает максимума в последней трети беременности, хотя абсолютное увеличение веса органа продолжается до половозрелого состояния. После этого начинается его прогрессивная инволюция.

       Раннее эмбриональное развитие T-клеточной системы иммунитета является общей характерной чертой всех позвоночных животных.

Показатели T- и B-клеточных систем иммунитета у плода человека

Время внутриутробного развития, недели Признаки  
3 Гемопоэз в желчном мешке
5 Появление в печени лимфоцитов, начало формирования селезенки
6 Закладка тимуса, экспрессия молекул HLA
7 Появление лимфоцитов в крови, появление внутриклеточного IgM
8 Заселение тимуса лимфоцитами, синтез компонентов комплемента и интерферона
9 Появление в печени лимфоцитов, несущих на мембране IgM и IgG
12 Появление лимфатических узлов, начало синтеза IgG
14 Появление в тимусе CD4- и CD8-положительных клеток
20 Появление скоплений лимфоцитов и первичных фолликулов в слизистых поверхностях, максимальная лейкопоэтическая активность клеток селезенки
30 Максимальная гемопоэтическая активность клеток костного мозга, начало синтеза IgA

 

       Несмотря на очень раннее становление системы иммунитета по морфологическим признакам, его функциональная активность выражена недостаточно полно.

       У развивающегося эмбриона стволовые кроветворные клетки впервые обнаруживаются в желточном мешке. Позднее основным депо стволовых элементов становится эмбриональная печень. У плода человека на 7—8-й неделе внутриутробного развития начинает закладываться костный мозг. Как кроветворный орган он начинает функционировать только с 4-го месяца беременности. Первые В-клетки появляются на 5—7-й неделе эмбриогенеза в паренхиме печени. Полноценный синтез IgM начинается ими на 10—11-й неделе развития. В условиях нормального развития плод не образует плазматических клеток. Они возникают при инфекционных заболеваниях матери.

       Функциональная недостаточность T- и B-клеточных систем у эмбриона связана, скорее всего, не с собственными элементами иммунной системы, а с незрелостью вспомогательных регуляторных компонентов.

       Плод с биологической точки зрения является для иммунной системы матери чужеродным антигеном, поскольку получает часть генов от отца. Для подавления отторжения плода иммунной системой матери иммунная система плода использует несколько механизмов. Так, на клетках ворсинчатого трофобласта появляется белок, называемый Fas-лигандом. Взаимодействуя с белком Fas на поверхности T-лимфоцитов матери, активированных против антигенов плода, он вызывает апоптоз материнских T-лимфоцитов. Кроме того, имеются особенности экспрессии молекул гистосовместимости I класса, обеспечивающие дополнительную защиту от атаки со стороны иммунной системы матери. В частности, классические молекулы гистосовместимости I класса отсутствуют на клетках ворсинчатого трофобласта. Важную роль в иммунологической толерантности плода играют и неклассические молекулы гистосовместимости (HLA-G).

Иммунная система новорожденных

       Содержание T-клеток в крови новорожденных близко к их содержанию у взрослых. В то же время реакция на бактериальные антигены у новорожденных снижена и достигает нормы только к 6—12 месяцу постнатального развития. Это связано с особенностями продукции цитокинов у новорожденных, в частности со сниженным уровнем продукции некоторых интерлейкинов и интерферонов.

        Количество B-клеток у новорожденных также близко к их содержанию у взрослых. Однако число антителопродуцирующих клеток значительно снижено. Так, в пуповинной крови новорожденных отсутствуют продуценты IgG на фоне пониженного содержания IgM- и IgA-продуцирующих клеток. К концу первого месяца жизни новорожденного количество IgM-положительных клеток достигает уровня, характерного для взрослых, хотя количество IgG- и IgA-продуцирующих клеток остается пониженным. Недостаток собственных иммуноглобулинов у новорожденных компенсируется антителами матери, поступающими в организм младенца через плаценту.

       Таким образом, принципиальным моментом является тот факт, что в эмбриональном периоде закономерно не происходит синтеза иммуноглобулинов, а гуморальная защита осуществляется только за счет IgG матери. Однако иногда рождаются новорожденные со следами других иммуноглобулинов, что может свидетельствовать о возможной инфицированности плода или о раннем созревании иммунной системы.

 

Механизм апоптоза

TNF-α и Fas-лиганд (CD178) запускают каскад биохимических реакций, финальным этапом которых является дефрагментация хромосом и гибель клетки. На поверхности клеток организма имеются специальные рецепторы для TNF-α и для Fas-лиганда. Связывание TNF-α и Fas-лигандов с рецепторами апоптоза активирует интрацеллюлярные "домены смерти" , результатом которой становится каскадная перестройка протеаз ICE/CED-3 семейства.
На взаимодействие TNF-α и Fas-лигандов с TNF-R и Fas/APO-1(CD95) и проведение апоптотического сигнала оказывают влияние Bcl и Bax белки. Результатом активации становится фософорилирование регуляторных белков, приводящее к последовательной активации митохондриальных каспаз, а также – ряда особых проонкогенов, кодирующих белки (Bcl-2, Bcl-XL, Ced-9, Bcl-w, и Mcl-1, Bax подобный белок, Bak, Bok,  и др.). Совокупность биохимических превращений приводит к морфологическим изменениям клетки, т.е. к ее деградации.

Регуляция апоптоза
- ингибиторы включают факторы роста, клеточный матрикс, половые стероиды, некоторые вирусные белки;

- активаторы включают недостаток факторов роста, потерю связи с матриксом, глюкокортикоиды, некоторые вирусы, свободные радикалы, ионизирующую радиацию.

При воздействии активаторов или отсутствии ингибиторов происходит активация эндогенных протеаз и эндонуклеаз. Это приводит к разрушению цитоскелета, фрагментации ДНК и нарушению функционирования митохондрий. Клетка сморщивается, но клеточная мембрана остается интактной, однако повреждение ее приводит к активации фагоцитоза. Погибшие клетки распадаются на небольшие, окруженные мембраной, фрагменты, которые обозначаются как апоптотические тельца. Воспалительная реакция на апоптотические клетки не возникает.

 



Онтогенез иммунной системы

 

                                       Иммунная система в эмбриогенезе

       Уровень иммунной реактивности развивающихся зародышей значительно уступает половозрелым особям. Тем не менее, начальные этапы становления T- и B-звеньев иммунной системы проявляются очень рано. Тимус — наиболее ранний орган иммунной системы, возникающий в процессе зародышевого развития. Формируется из эндодермы 3-го и 4-го глоточных карманов и эктодермы 3-й и 4-й жаберных щелей. Развивающийся тимус характеризуется интенсивной клеточной пролиферацией и увеличением массы органа. Отношение массы тимуса к массе тела достигает максимума в последней трети беременности, хотя абсолютное увеличение веса органа продолжается до половозрелого состояния. После этого начинается его прогрессивная инволюция.

       Раннее эмбриональное развитие T-клеточной системы иммунитета является общей характерной чертой всех позвоночных животных.

Показатели T- и B-клеточных систем иммунитета у плода человека

Время внутриутробного развития, недели Признаки  
3 Гемопоэз в желчном мешке
5 Появление в печени лимфоцитов, начало формирования селезенки
6 Закладка тимуса, экспрессия молекул HLA
7 Появление лимфоцитов в крови, появление внутриклеточного IgM
8 Заселение тимуса лимфоцитами, синтез компонентов комплемента и интерферона
9 Появление в печени лимфоцитов, несущих на мембране IgM и IgG
12 Появление лимфатических узлов, начало синтеза IgG
14 Появление в тимусе CD4- и CD8-положительных клеток
20 Появление скоплений лимфоцитов и первичных фолликулов в слизистых поверхностях, максимальная лейкопоэтическая активность клеток селезенки
30 Максимальная гемопоэтическая активность клеток костного мозга, начало синтеза IgA

 

       Несмотря на очень раннее становление системы иммунитета по морфологическим признакам, его функциональная активность выражена недостаточно полно.

       У развивающегося эмбриона стволовые кроветворные клетки впервые обнаруживаются в желточном мешке. Позднее основным депо стволовых элементов становится эмбриональная печень. У плода человека на 7—8-й неделе внутриутробного развития начинает закладываться костный мозг. Как кроветворный орган он начинает функционировать только с 4-го месяца беременности. Первые В-клетки появляются на 5—7-й неделе эмбриогенеза в паренхиме печени. Полноценный синтез IgM начинается ими на 10—11-й неделе развития. В условиях нормального развития плод не образует плазматических клеток. Они возникают при инфекционных заболеваниях матери.

       Функциональная недостаточность T- и B-клеточных систем у эмбриона связана, скорее всего, не с собственными элементами иммунной системы, а с незрелостью вспомогательных регуляторных компонентов.

       Плод с биологической точки зрения является для иммунной системы матери чужеродным антигеном, поскольку получает часть генов от отца. Для подавления отторжения плода иммунной системой матери иммунная система плода использует несколько механизмов. Так, на клетках ворсинчатого трофобласта появляется белок, называемый Fas-лигандом. Взаимодействуя с белком Fas на поверхности T-лимфоцитов матери, активированных против антигенов плода, он вызывает апоптоз материнских T-лимфоцитов. Кроме того, имеются особенности экспрессии молекул гистосовместимости I класса, обеспечивающие дополнительную защиту от атаки со стороны иммунной системы матери. В частности, классические молекулы гистосовместимости I класса отсутствуют на клетках ворсинчатого трофобласта. Важную роль в иммунологической толерантности плода играют и неклассические молекулы гистосовместимости (HLA-G).

Иммунная система новорожденных

       Содержание T-клеток в крови новорожденных близко к их содержанию у взрослых. В то же время реакция на бактериальные антигены у новорожденных снижена и достигает нормы только к 6—12 месяцу постнатального развития. Это связано с особенностями продукции цитокинов у новорожденных, в частности со сниженным уровнем продукции некоторых интерлейкинов и интерферонов.

        Количество B-клеток у новорожденных также близко к их содержанию у взрослых. Однако число антителопродуцирующих клеток значительно снижено. Так, в пуповинной крови новорожденных отсутствуют продуценты IgG на фоне пониженного содержания IgM- и IgA-продуцирующих клеток. К концу первого месяца жизни новорожденного количество IgM-положительных клеток достигает уровня, характерного для взрослых, хотя количество IgG- и IgA-продуцирующих клеток остается пониженным. Недостаток собственных иммуноглобулинов у новорожденных компенсируется антителами матери, поступающими в организм младенца через плаценту.

       Таким образом, принципиальным моментом является тот факт, что в эмбриональном периоде закономерно не происходит синтеза иммуноглобулинов, а гуморальная защита осуществляется только за счет IgG матери. Однако иногда рождаются новорожденные со следами других иммуноглобулинов, что может свидетельствовать о возможной инфицированности плода или о раннем созревании иммунной системы.

 

Критические периоды в развитии иммунной системы

 

 

Во внутриутробном периоде можно выделить критический этап развития органов иммунной системы с 8 до 12 недели, когда происходит дифференцировка органов и клеток иммунной системы.

 

Дети с первых дней жизни все больше и больше соприкасаются с внешней средой во всем ее разнообразии, а обменные процессы у них протекают с высокой активностью. В дыхательные пути поступает воздух, в котором могут быть посторонние частицы. Пищевые антигены, а вместе с ними и другие чужеродные вещества, и патогенные микроорганизмы воздействуют на слизистую оболочку органов пищеварения. Требуется защита и от появляющихся в самом организме и становящихся чужеродными продуктов жизнедеятельности. Естественно, что в детском организме очень рано формируются механизмы защиты от всего генетически чужеродного. В связи с этим после рождения человека выделяют несколько критических периодов в развитии иммунной системы.

 

Первым критическим периодом является период новорожденности, так как организм встречается с огромным количеством антигенов. При этом недостаток собственных иммуноглобулинов компенсируется антителами матери, поступающими в организм младенца.

 

Второй критический период от 3 до 6 месяцев, когда наблюдается ослабление пассивного иммунитета. В этот период дети проходят интенсивную вакцинацию.

 

Третий критический период - 2 - ой год жизни. В это время значительно расширяются контакты ребенка, так как они начинают свободно перемещаться и употреблять более разнообразную пищу. Таким образом, количество лимфоидных узелков возрастает. Так, в небных миндалинах детей в возрасте до 3 лет число узелков, по сравнению с таковым у новорожденных, увеличивается в 29 раз, в глоточной миндалине - в 8 раз. В стенках тонкой кишки количество лимфоидных узелков за 2 - 3 года жизни ребенка возрастает в 14 раз, аппендикса - в 3 раза, мочевого пузыря - в 10 раз.

 

Четвертый критический период - 4 - 6 - й годы жизни. В этом возрасте система местного иммунитета у большинства детей завершает свое развитие.

 

Пятый критический период - подростковый возраст. Повышение секреции половых гормонов ведет к подавлению клеточного звена иммунитета и стимуляции гуморального иммунитета.

 

Начиная приблизительно с юношеского возраста, в лимфатических узлах наблюдается разрастание соединительной ткани, в узлах появляется жировая ткань, а количество паренхимы коркового и мозгового вещества уменьшается. По мере инволютивных изменений в лимфатических узлах исчезают или заметно уменьшаются в количестве лимфоидные узелки с центрами размножения.

 

Шестой критический период - старческий и пожилой возраст. С возрастом наблюдается подавление иммунитета, хотя абсолютное количество Т - и В- клеток не снижается, а изменяется их функциональная активность. Это приводит к типичным болезням пожилого возраста - неопластическим поражениям и аутоиммунным расстройствам.

 

В пожилом, старческом возрасте лимфоидные узелки исчезают вообще. В некоторых лимфатических узлах их лимфоидная паренхима остается в виде участков вблизи ворот узла или возле его капсулы. Из-за разрастания соединительной ткани наиболее мелкие лимфатические узлы становятся непроходимыми для лимфы и выключаются из лимфатического русла. Средние и крупные лимфатические узлы, если они лежат рядом, срастаются друг с другом и ко второй половине постнатального периода образуют крупные узлы лентовидной и сегментарной формы, которые на гистологических срезах имеют дольчатое строение. Таким образом, у людей в зрелом и особенно пожилом и старческом возрасте уменьшается количество лимфатических узлов в регионарных группах, в то же время встречается много узлов крупных размеров.

 

 

Дата: 2019-12-10, просмотров: 159.