Во всех рассмотренных косвенных доказательствах выдвигаются две альтернативы: тезис и антитезис. Затем показывается ложность последнего, в итоге остается только тезис.
Можно не ограничивать число принимаемых во внимание возможностей только двумя. Это приведет к так называемому разделительному косвенному доказательству, или доказательству через исключение. Оно применяется в тех случаях, когда известно, что доказываемый тезис входит в число альтернатив, полностью исчерпывающих все возможные альтернативы данной области.
Например, нужно доказать, что одна величина равна другой. Ясно, что возможны только три варианта: или две величины равны, или первая больше второй, или, наконец, вторая больше первой. Если удалось показать, что ни одна из величин не превосходит другую, два варианта будут отброшены и останется только третий: величины равны.
Доказательство идет по простой схеме: одна за другой исключаются все возможности, кроме одной, которая и является доказываемым тезисом.
В разделительном доказательстве взаимная несовместимость возможностей и то, что ими исчерпываются все мыслимые альтернативы, определяются не логическими, а фактическими обстоятельствами. Отсюда обычная ошибка разделительных доказательств: рассматриваются не все возможности.
С помощью разделительного доказательства можно попытаться, например, показать, что в Солнечной системе жизнь есть только на Земле. В качестве возможных альтернатив выдвинем утверждения, что жизнь есть на Меркурии, Венере, Земле и т.д., перечисляя все планеты Солнечной системы. Опровергая затем все альтернативы, кроме одной – говорящей о наличии жизни на Земле, получим доказательство исходного утверждения.
Нужно заметить, что в ходе доказательства рассматриваются и опровергаются допущения о существовании жизни на других планетах. Вопрос о том, если ли жизнь на Земле, вообще не поднимается. Ответ получается косвенным образом: путем показа того, что ни на одной другой планете нет жизни. Это доказательство оказалось бы, конечно, несостоятельным, если бы, допустим, выяснилось, что, хотя ни на одной планете, кроме Земли, жизни нет, живые существа имеются на одной из комет или на одной из так называемых малых планет, тоже входящих в состав Солнечной системы.
Заканчивая разговор о косвенных доказательствах, обратим внимание на их своеобразие, ограничивающее в известной мере их применимость.
Нет сомнения, что косвенное доказательство представляет собой эффективное средство обоснования. Но, имея с ним дело, мы вынуждены все время сосредоточиваться не на верном положении, справедливость которого необходимо обосновать, а на ошибочных утверждениях. Сам ход доказательства состоит в том, что из антитезиса, являющегося ложным, мы выводим следствия до тех пор, пока не придем к утверждению, ошибочность которого несомненна.
Косвенное доказательство – хорошее орудие исследования, но оно не всегда удачный прием изложения материала. Не случайно в практике преподавания нередок такой парадоксальный совет: после того как косвенное доказательство проведено, ход его полезно тут же забыть, оставив в памяти только доказанное положение.
Имеются также более серьезные возражения против косвенного доказательства. Они связаны с использованием в нем закона исключенного третьего. Как уже говорилось, не всеми он признается универсальным, приложимым в любых без исключения случаях.
Можно отметить, что найденное косвенное доказательство какого-то утверждения обычно удается перестроить в прямое доказательство этого же утверждения. Обычно, но не всегда.
Опровержение
О доказательстве в логике говорится много, об опровержении – только вскользь. Причина понятна: опровержение представляет собой как бы зеркальное отображение доказательства.
Способы опровержения
Опровержение – это рассуждение, направленное против выдвинутого положения и имеющее своей целью установление его ошибочности или недоказанности.
Наиболее распространенный прием опровержения – выведение из опровергаемого утверждения следствий, противоречащих истине. Хорошо известно, что, если даже одно-единственное логическое следствие некоторого положения неверно, ошибочным будет и само это положение.
Уже на первых уроках физики в школе показывается опыт, придуманный когда-то итальянским физиком Э. Торричелли. Стеклянную трубку, запаянную с одного конца, наполняют ртутью и опрокидывают в чашку с ртутью. Ртуть из трубки не выливается, она только опускается немного, и над нею образуется вакуум, «торричеллиева пустота». Ртуть в трубке на определенном уровне поддерживает давление атмосферы. «Опыты с несомненностью доказывают, – заявлял Торричелли, – что воздух имеет вес...»
Если кто-либо утверждает, что воздух невесом, можно сослаться на этот опыт. Если бы воздух не имел веса, он не давил бы на ртуть в чашке и уровень ртути в трубке сравнялся бы с уровнем в чашке. Но этого не происходит, значит, неверно, что у воздуха нет веса.
Другой прием установления несостоятельности выдвигаемого кем-либо положения – доказательство справедливости отрицания этого положения. Утверждение и его отрицание не могут быть одновременно истинными. Как только удается показать, что верно отрицание рассматриваемого положения, вопрос об истинности самого этого положения автоматически отпадет. Достаточно, скажем, показать одного черного лебедя, чтобы опровергнуть убеждение в том, что лебеди бывают только белыми.
В романе И.С. Тургенева «Рудин» есть такой диалог: «Стало быть, по-вашему, убеждений нет?» – «Нет – и не существует». – «Это ваше убеждение?» – «Да». – «Как же вы говорите, что их нет? Вот вам уже одно на первый случай».
Ошибочному мнению, что никаких убеждений нет, противопоставляется его отрицание: есть по крайней мере одно убеждение, а именно убеждение, что убеждений нет. Особенность этого случая в том, что отрицание вытекает из самого исходного положения и не требует специального обоснования.
Эти два приема применимы для опровержения любого утверждения, независимо от того, поддерживается оно какими-либо аргументами или нет. Выводя из утверждения неверное следствие или показывая справедливость отрицания утверждения, мы тем самым доказываем ложность самого утверждения. И какие бы аргументы ни приводились в защиту последнего, они не составят его доказательства. Доказать, как известно, можно только истинное утверждение.
Если положение выдвигается с каким-либо обоснованием, операция опровержения может быть направлена против обоснования. В этом случае надо показать, что приводимые аргументы ошибочны: вывести из них следствия, которые окажутся в итоге несостоятельными, или доказать утверждения, противоречащие аргументам.
Следует иметь в виду, что опровержение доводов, приводимых в поддержку какого-либо положения, не означает еще неправильности самого этого положения. Утверждение, являющееся по сути верным, может отстаиваться с помощью ошибочных или слабых доводов. Выявляя это, мы демонстрируем именно ненадежность предлагаемого обоснования, а не ложность утверждения. Неопытный спорщик, как правило, отказывается от своей позиции, обнаружив, что приводимые им доводы неубедительны. Нужно, однако, помнить, что правильная в своей основе идея иногда подкрепляется не очень надежными, а то и просто ошибочными соображениями. Когда это выясняется, следует искать другие, более веские аргументы, а не спешить отказываться от самой идеи.
Мало раскритиковать аргументы оппонента в споре. Этим будет показано только то, что его позиция плохо обоснована и шатка. Чтобы вскрыть ее ошибочность, надо убедительно обосновать противоположную позицию.
Особое значение при опровержении имеют факты. Ссылка на верные и неоспоримые факты, противоречащие ложным или сомнительным утверждениям оппонента, – самый надежный и успешный способ опровержения. Реальное явление или событие, не согласующееся со следствиями какого-либо универсального положения, опровергает не только эти следствия, но и само положение. Факты, как известно, упрямая вещь. При опровержении ошибочных, оторванных от реальности, умозрительных конструкций «упрямство фактов» проявляется особенно ярко.
Опровержение может быть направлено на саму связь аргументов и доказываемого положения. В этом случае надо показать, что тезис не вытекает из доводов, приведенных в его обоснование. Если между аргументами и тезисом нет логической связи, то нет и доказательства тезиса с помощью указанных аргументов. Из этого не следует, конечно, ни то, что аргументы ошибочны, ни то, что тезис ложен.
Ошибки в доказательстве
Ошибка в доказательстве – вещь довольно обычная. Проводя доказательства, мы опираемся на нашу логическую интуицию, на стихийно усвоенное знание законов логики. Как правило, оно нас не подводит. Но в отдельных и особенно в сложных случаях оно может оказаться ненадежным.
Эксперименты, проводившиеся психологами, показывают, что едва ли не каждое четвертое наше умозаключение не опирается на закон логики, а значит, является неправильным. Логику редко изучают специально. Навыки логичного, т.е. последовательного и доказательного, мышления формируются и совершенствуются в практике рассуждений. Но, как заметил английский философ Ф. Бэкон, упражнения, не просветленные теорией, с одинаковым успехом закрепляют как правильное, так и ошибочное.
Наше логическое чутье и наши навыки доказательства не так безупречны, как это часто кажется. Полезно поэтому не упускать случая, чтобы их усовершенствовать.
Провести четкую границу удается только тогда, когда известно не только то, что охватывается ею, но и то, что остается за ее пределами. Ясное понимание доказательства предполагает, помимо прочего, определенное представление о рассуждениях, имеющих форму доказательства, но на самом деле им не являющихся. Такие «несостоявшиеся доказательства» – результат ошибок, допущенных – непреднамеренно или сознательно – в ходе доказательства. Знакомство с наиболее типичными из них способствует совершенствованию практических навыков доказательства и позволяет лучше понять, что представляет собой «безошибочное» доказательство.
Формальная ошибка
Доказательство – это логическая связь принятых аргументов и выводимого из них тезиса. Логические ошибки в доказательстве можно разделить на относящиеся к тезису, к аргументам и к их связи.
Формальная ошибка имеет место тогда, когда умозаключение не опирается на логический закон и заключение не вытекает из принятых посылок. Иногда эту ошибку сокращенно так и называют – «не вытекает».
Допустим, кто-то рассуждает так: «Если я навещу дядю, он подарит мне фотоаппарат, когда дядя подарит мне фотоаппарат, я продам его и куплю велосипед: значит, если я навещу дядю, я продам его и куплю велосипед».
Ясно, что это – несостоятельное рассуждение. Его заключение насчет «продажи дяди» абсурдно. Но посылки безобидны и вполне могут быть истинными, так что источник беспокойства не в них. Причина ошибки в самом выведении из принятых утверждений того, что в них вообще не подразумевалось.
Вывод из верных посылок всегда дает верное заключение. В данном случае заключение ложно. Значит, умозаключение не опирается на закон логики и неправильно. Ошибка проста. Местоимение «его» может указывать на разные предметы. В предложении «Я продам его и куплю велосипед» оно должно указывать на фотоаппарат. Но выходит так, что на самом деле оно относится к дяде.
Чтобы опровергнуть это неправильное рассуждение, надо показать, что между принятыми посылками и сделанным на их основе заключением нет логической связи.
Немецкий физик В. Нернст, открывший третье начало термодинамики (о недостижимости абсолютного нуля температуры), так «доказывал» завершение разработки фундаментальных законов этого раздела физики: «У первого начала было три автора: Майер, Джоуль и Гельмгольц; у второго – два: Карно и Клаузиус, а у третьего – только один: Нернст. Следовательно, число авторов четвертого начала термодинамики должно равняться нулю, т.е. такого закона просто не может быть».
Это шуточное доказательство хорошо иллюстрирует ситуацию, когда между аргументами и тезисом явно нет логической связи. Иллюзия своеобразной «логичности» рассуждения создается чисто внешним для существа дела перечислением.
В гробнице египетских фараонов была найдена проволока. На этом основании один «египтолог» высказал предположение, что в Древнем Египте был известен телеграф. Услышав об этом, другой «исследователь» заключил, что, поскольку в гробницах ассирийских царей никакой проволоки не найдено, в Древней Ассирии был уже известен беспроволочный телеграф.
Предположение «египтолога» – если это не шутка – очевидная нелепость. Еще большая глупость – если это опять-таки не шутка – заключение «ассириолога». И конечно же, никакой логической связи между этими «предположениями» и сделанными как бы на их основе «заключениями» нет.
Встречаются, к счастью, довольно редко, хаотичные, аморфные рассуждения. Внешне они имеют форму доказательств и даже претендуют на то, чтобы считаться ими. В них есть слова «таким образом», «следовательно», «значит» и подобные им, призванные указывать на логическую связь аргументов и доказываемого положения. Но эти рассуждения доказательствами на самом деле не являются, поскольку логические связи подменяются в них психологическими ассоциациями.
Вот, к примеру, рассуждение, внешне напоминающее доказательство:
«Вечный двигатель признан невозможным, так как он противоречит закону сохранения энергии, или первому началу термодинамики. Когда было открыто второе начало термодинамики, стали говорить о невозможности вечного двигателя второго рода. Это же можно сказать и о вечном двигателе третьего рода, который запрещается третьим началом термодинамики. Но четвертого начала термодинамики нет! Следовательно, ничто не мешает создать вечный двигатель четвертого рода. И тем более вечный двигатель пятого и так далее рода!»
Ошибки в отношении тезиса
Характерная ошибка в отношении тезиса – подмена тезиса, неосознанное или умышленное замещение его в ходе доказательства каким-то другим утверждением. Подмена тезиса ведет к тому, что доказывается не то, что требовалось доказать.
Тезис может сужаться, и в таком случае он остается недоказанным. Например, для доказательства того, что сумма углов треугольника равна двум прямым, недостаточно доказать, что эта сумма не больше 180°. Для обоснования того, что человек должен быть честным, мало доказать, что разумному человеку не следует лгать.
Тезис может также расширяться. В этом случае нужны дополнительные основания. И может оказаться, что из них вытекает не только исходный тезис, но и какое-то иное, уже неприемлемое утверждение. «Кто доказывает слишком много, тот ничего не доказывает», – эта старая латинская пословица как раз и имеет в виду такую опасность.
Иногда случается полная подмена тезиса, притом она не так редка, как это может показаться. Обычно она затемняется какими-то обстоятельствами, связанными с конкретной ситуацией, и благодаря этому ускользает от внимания.
Широкую известность получил случай с древнегреческим философам Диогеном, которого однажды за подмену тезиса спора даже побили. Один философ доказывал, что в мире, как он представляется нашему мышлению, нет движения, нет многих вещей, а есть только одна-единственная вещь, притом неподвижная и круглая. В порядке возражения Диоген встал и начал не спеша ходить перед спорящими. За это его, если верить некоторым старым источникам, и побили палкой.
Речь шла о том, что для нашего ума мир неподвижен. Диоген же своим хождением пытался подтвердить другую мысль: в чувственно воспринимаемом мире движение есть. Но это и не оспаривалось. Автор мнения, что движения нет, считал, что чувства, говорящие о множественности вещей и их движении, просто обманывают нас.
Разумеется, мнение, будто движения нет, ошибочно, как ошибочна идея, что чувства не дают нам правильного представления о мире. Но раз обсуждалось такое мнение, нужно было говорить о нем, а не о чем-то другом, хотя бы и верном. Вот как описывает этот спор А.С. Пушкин:
Движенья нет, сказал мудрец брадатый,
Другой смолчал и стал пред ним ходить.
Сильнее бы не мог он возразить;
Хвалили все ответ замысловатый.
Но, господа, забавный случай сей
Другой пример на память мне приходит:
Ведь каждый день пред нами солнце ходит,
Однако ж прав упрямый Галилей.
Дата: 2019-12-22, просмотров: 252.