Предмет, задачи и методологическая основа ксе.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Предмет, задачи и методологическая основа ксе.

В ксе имеет свои задачи формирование у студентов научного мировоззрения и осознания ими принципов и закономерностей развития природы-от микромира до Вселенной и человека. Ноучн мировоззрение отлич от др мировоззрений тем, что строится на основе строгих научных теорий. Курс ксе включает в себя основные концепции таких наук, как физика, биология, химия, астрономия и др. методологическим стержнем является эволюционно-синергетическая парадигма. Ее содерж-е предполаг соед-е принципов универсальн-го эволюционизма и самоорганизации при рассмотрении тех или иных процессов и явлений материального мира.

 

Типы и виды организации деятельности людей

Нравы и обычаи в общ-ве; стиль одежды и архитектуры населений; структура занятости насел-я; оснощение и организ-я армии; общественно-полит устр-во гос-ва и разв-е экономики; уровень искусства; роль религии в общ-ве; развитость языка, письменность и средства коммуникации; организация системы обр-я членов общ-ва; уровень разв-я науки, техники и произв-ва.

 

Пирамида маслоу

1-физиологич потреб (еда, жилище, отдых)

2-потребность в защищенности, безопасности

3-социальные (чувства принадлежности к чему-либо, кому-либо, потребн соц взаимодействия.

4-потребность в уважении (в самоутверждении, в личностных достижениях, уважение со стороны окр)

5-потребности в самовыражении (стремление реализовать свои способности, стремление к разв-ю собств личности)

 

Классификация естественнонаучных картин мира

екм динамично соответствует уровню разв-я естественных наук, основным концепциям и парадигмам, принятых в отдельных областях познаний. В истории чел-ва можно выделить 3 этапа соотв-е аграрному, индустриальному и постиндустриальному общ-ву.

Аграрное-сущностная екм

Индустр-механическая екм

Постиндустр-современная екм

 

Сущностная картина мира

Исторически первой возникла сущностная картина мира, предложенная античными мыслителями.

Концепции:

1. Концепция мифологического культурного наследования. Центральным объектом познания явл космос

2. Космологическая модель, объясняющая единую основу мировоззрения , множественность мира и богов, его единство. В моделе одним из центральных вопросов рассм-я является вопрос о происхождении мира, его сущности и устр-ве. Модель подразумевает существование закономерностей как основы, гармонии космоса.

3. Результаты исследования античной натурфилософии. Подходы к иссл-юнатурфилософии:

      Эмпирико-чувственные

      Логико-формальный численный

Вершиной натурфилософии явл.:

      Создание атомистики.

     Энциклопедическое описание Аристотеля живой и неживой природы

4. Метофизика-учение о сущности

5. Концепция структурного и смыслового единства в описании микрокосмоса и макрокосмоса

 

Механическая екм

Была сформирована в XVII-XVIII в

Концепция:

1. Бог-создатель вселенной => в мире все определено и предопределено создателем.

2. Главное в познании факты,а не причины их появлений

3. Мир можно описать математически

4. Измерения и любая количественная оценка имеют определенный смысл в познании

5. Пространственно-временные координаты имеют качественную однородность, время обратимо.

6. Гуманитарные знания выделяют из общего знания, естественно—научные знания рассматривают отдельно.

 

Современная картина мира.

Она еще формируется

Концепции:

1. Концепция стирания граней между естественными и гуманитарными науками, целостность естествознания, самоинтеграция любых научных знаний.

2. Концепция Большого взрыва, после которого началась эволюция вселенной.

3. Сближение позиции религиозных и естественных наук

4. Концепция виртуальной реальности и повышение в обществе ее роли.

 

Принцип системности

Целостность, позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.

Иерархичность строения, то есть наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.

Структуризация, позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами её отдельных элементов, сколько свойствами самой структуры.

Множественность, позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.

Системность, свойство объекта обладать всеми признаками системы

 

Принцип самоорганизации

Принцип целостности и системности естественнонаучного образования служит основой для реализации межпредметных связей , создания единого методологического подхода к рассмотрению природных процессов и явлений с точки зрения различных естественных наук.

Принцип историчности

Принцип историчности реализует гуманитарную составляющую научного образования, подчеркивая преемственность развития науки на различных этапах ее развития, показывает роль отдельных ученых в становлении и развитии науки.

 

Бифуркация

Это приобретение нового кач-ва движ-я, динамич. системы при незначит изменении ее параметров. Переход в системе в новое устойч сост-е неоднозначен, достигшая критич параметра система как бы «сваливается» в одно из многих возможных для нее устойч состояний. В этой точке (т.бифурк) эволюц путь системы как бы разветвляется и какая-именно ветвь разетвл-я будет выбрана решает случай. После того как выбор сделан и система перешла в качественно- новое , устойч состояние-назад возврата нет, этот процесс необратим.

 

Законы ньютона

 1. Существуют такие системы отсчёта, относительно которых материальная точка, при отсутствии внешних воздействий, сохраняет состояние покоя или равномерного прямолинейного движения.

2. В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

3. Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

 

Принцип эквивалентности

В картине мира современной физики играет важную роль принцип эквивалентности. Согласно которому после тяготения в небольшой обл простр-ва и времени, в которой его можно считать однородным и постоянным во времени по своему проявлению тождественно ускоренной системе отсчета. Принцип эквивалентности следует из равенства инертной и гравитационной масс. В соответствие с принципом эквивалентности общая теория относительности трактует тяготение как искривление 4-ех мерного пространства временного конценцуума.

 

Постулат состояния

Квантовое состояние (состояние)-это полный набор данных, определяющих состояние микрообъекта.

 

Концепция волновой функции

Волновая ф-я – это осн хар-ка состояния микрообъектов. Позволяет вычислять среднее значение физических величин, характеризуя данный объект. Статистический интервьюер физического смысла волновой ф-ии: квадрат модуля волновой ф-ии определяет вероятность нахожд-я частицы в данный момент времени в данной точке.

Осн св-вами волн ф-ии явл: непрерывность, ограниченность, однозначность.

 

Уравекеие Шредингера

- уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, вгамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения

 

Принцип суперпозиции

Если система находится в определенном состоянии, то одновременно она находится отчасти, т.е с различной вероятностью в нескольких других состояниях. Суперпозиция не имеет аналогов в классической физике.

 

Постулат об измерении

Результатом измерения физической величины является число, относящееся к спектру оператора. Спектр – это савокупность всех возможных значений.

 

Адроны и лептоны

Лепто́н (греч. λεπτός — лёгкий) — элементарная частица с полуцелым спином, не участвующая в сильном взаимодействии. Название «лептон» было предложено Л. Розенфельдом в 1948 году и отражало тот факт, что все известные в то время лептоны были значительно легче тяжёлых частиц, входящих в класс барионов (греч. βαρύς — тяжёлый). Сейчас этимология термина уже не вполне согласуется с действительным положением дел, так как открытый в 1977 тау-лептон примерно в два раза тяжелее самых лёгких барионов (протона и нейтрона).
Адро́н (от греч. hadros — тяжёлый; термин предложен советским физиком Л. Б. Окунем) — класс элементарных частиц, подверженных сильному взаимодействию и не являющихся истинно элементарными.
Адроны делятся на две основные группы в соответствии с их кварковым составом:
мезоны — состоят из одного кварка и одного антикварка,
барионы — состоят из трёх кварков трёх цветов, образуя так называемую бесцветную комбинацию

 





Концепция Большого взрыва

Большо́й взрыв (англ. Big Bang) — космологическая теория начала расширения Вселенной, перед которым Вселенная находилась всингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,13 млрд лет назад[1] из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 K (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Красное смещение хаббла

Красное смещение для галактик было обнаружено американским астрономом В. Слайфером в 1912—1914; в 1929 Э. Хаббл открыл, что красное смещение для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон красного смещения, или закон Хаббла). Несмотря на то, что, как выяснилось позже, проводимые им измерения оказались неточными и по сути не имеющими отношения к космологическому красному смещению (расширение Вселенной начинает сказываться на гораздо больших расстояниях), как показали более поздние измерения, «открытый» им закон действительно имеет место.

Хотя предлагались различные объяснения наблюдаемого смещения спектральных линий, например, гипотеза утомлённого света, только Общая теория относительности даёт непротиворечивую картину, объясняющую все наблюдения. Данное объяснение этого явления является общепринятым.

Будущее Вселенной

В зависимости от средней плотности и свойств материи и энергии во Вселенной, она или будет продолжать вечное расширение, или будет гравитационно замедляться и, в конце концов, схлопнется обратно в себя в Большом Сжатии. Данные, имеющиеся в настоящее время, позволяют утверждать, что не только материи и энергии недостаточно, чтобы вызвать сжатие, но и что расширение Вселенной происходит с ускорением. Другие идеи о судьбе Вселенной включают теории Большого Разрыва, Большого Замерзания и тепловой смерти Вселенной.

 

Концепция горячей Вселенной

Физическая теория эволюции Вселенной, в основе которой лежит предположение о том, что до того, как в природе появились звезды, галактики и другие астрономические объекты, вещество представляло собой быстро расширяющуюся и первоначально очень горячую среду. Предположение о том, что расширение Вселенной началось с "горячего" состояния, когда вещество представляло собой смесь различных взаимодействующих между собой элементарных частиц высоких энергий, было впервые выдвинуто Г.А.Гамовым в 1946 г. В настоящее время Г.В.Т. считается общепризнанной, Двумя самыми важными наблюдательными подтверждениями этой теории является обнаружение реликтового излучения, предсказанного теорией, и объяснение наблюдаемого соотношения между относительной массой водорода и гелия в природе

 

Первые три минуты

Рождение звезды

Формирование звезды — процесс, которым плотные части молекулярных облаков коллапсируют в шар плазмы, чтобы сформировать звезду.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемым звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

По мере того, как молекулярное облако вращается вокруг какой-либо галактики, несколько факторов могут вызвать гравитационный коллапс. К примеру, облака могут столкнуться друг с другом, или одно из них может пройти через плотный рукав спиральной галактики. Другим фактором может стать близлежащий взрыв сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются и возбуждаются в результате столкновения.

При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше ~100 солнечных масс способны сформировать звезду. В таких формированиях газ нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, трансформируясь во вращающийся сферический объект.

Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздообразующих коконов можно наблюдать на фоне яркого излучения окружающего газа

Эволюция звезды

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Звезда начинает свою жизнь как холодное разрежённое облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла[1]. В таком состоянии он пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии.

В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы.

Белые карлики

Бе́лые ка́рлики — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать, как белый карлик), лишённые собственных источников термоядерной энергии.

Белые карлики представляют собой компактные звёзды с массами, сравнимыми с массой Солнца, но с радиусами в ~100[1] и, соответственно, светимостями в ~10 000 раз меньшими солнечной. Плотность белых карликов составляет 105—109 г/см³[1], что почти в миллион раз выше плотности обычных звёзд главной последовательности. По численности белые карлики составляют по разным оценкам 3—10 % звёздного населения нашей Галактики.

Решение Фаулера объяснило внутреннее строение белых карликов, но не прояснило механизм их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль астронома Эрнста Эпика, что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего, и предположение астрономаВасилия Фесенкова, , что звёзды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на эволюцию звёзд. Эти предположения полностью подтвердились.

Нейтронные звезды

Нейтро́нная звезда́ — астрономическое тело, один из конечных продуктов эволюции звёзд, состоит из нейтронной сердцевины и тонкой коры вырожденного вещества с преобладанием ядер железа и никеля.

Нейтронные звёзды имеют очень малый размер — 20—30 км в диаметре, средняя плотность вещества такой звезды в несколько раз превышает плотность атомного ядра. Массы большинства известных нейтронных звёзд близки к 1,44 массы Солнца, что равно значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 1,4 до примерно 2,5 солнечных масс, однако эти значения в настоящее время известны весьма неточно. Самая массивная нейтронная звезда из открытых Vela X-1 имеет массу не менее 1,88±0,13 солнечных масс.

 

Черные дыры

Чёрная дыра́ — область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света).

Граница этой области называется горизонтом событий, а её характерный размер — гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда:

,

где c — скорость света, M — масса тела, G — гравитационная постоянная.

Теоретически возможность существования таких областей пространства-времени следует из некоторых точных решений уравнений Эйнштейна, первое[1]из которых было получено Карлом Шварцшильдом . Точный изобретатель термина неизвестен, но само обозначение было. Ранее подобны объекты называли «коллапсары» , а также «застывшие звёзды.

Вопрос о реальном существовании чёрных дыр тесно связан с тем, насколько верна теория гравитации, из которой следует их существование. В современной физике стандартной теорией гравитации, лучше всего подтверждённой экспериментально, является общая теория относительности (ОТО), уверенно предсказывающая возможность образования чёрных дыр, но их существование возможно и в рамках других (не всех) моделей. Поэтому наблюдательные данные анализируются и интерпретируются, прежде всего, в контексте ОТО, хотя, строго говоря, эта теория не является экспериментально подтверждённой для условий, соответствующих области пространства-времени в непосредственной близости от чёрных дыр звёздных масс[5]. Поэтому утверждения о непосредственных доказательствах существования чёрных дыр, в том числе и в этой статье ниже, строго говоря, следует понимать в смысле подтверждения существования астрономических объектов, таких плотных и массивных[5], а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности.

Структура галактики

Диаметр Галактики составляет около 30 тысяч парсек (порядка 100 000 световых лет) при оценочной средней толщине порядка 1000 световых лет. Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд (современная оценка колеблется в диапазоне предположений от 200 до 400 миллиардов). Основная масса звёзд расположена в форме плоского диска. По состоянию на январь 2009, масса Галактики оценивается в 3×1012 масс Солнца[4], или 6×1042 кг. Бо́льшая часть массы Галактики содержится не в звёздах и межзвёздном газе, а в несветящемся гало из тёмной материи.

  Ядро

В средней части Галактики находится утолщение, которое называется балджем (англ. bulgeутолщение), составляющее около 8 тысяч парсек в поперечнике. В центре Галактики, по всей видимости, располагается сверхмассивная чёрная дыра (Стрелец А*) вокруг которой, предположительно, вращается чёрная дыра средней массы[10]. Их совместное гравитационное действие на соседние звёзды заставляет последние двигаться по необычным траекториям[10].

Центр ядра галактики проецируется на созвездие Стрельца (α = 265°, δ = −29°). Расстояние от Солнца до центра Галактики 8,5 килопарсек (2,62 · 1022 см, или 27 700 световых лет).

Рукава

Галактика относится к классу спиральных галактик, что означает, что у Галактики есть спиральные рукава, расположенные в плоскости диска. Диск погружён в гало сферической формы, а вокруг него располагается сферическая корона. Солнечная система находится на расстоянии 8,5 тысяч парсек от галактического центра, вблизи плоскости Галактики (смещение к Северному полюсу Галактики составляет всего 10 парсек), на внутреннем краю рукава, носящего название рукав Ориона. Такое расположение не даёт возможности наблюдать форму рукавов визуально. Новые данные по наблюдениям молекулярного газа (СО) говорят о том, что у нашей Галактики есть два рукава, начинающиеся у бара во внутренней части Галактики. Кроме того, во внутренней части есть ещё пара рукавов. Затем эти рукава переходят в четырёхрукавную структуру, наблюдающуюся в линии нейтрального водорода во внешних частях Галактики[11].

Гало

Галактическое гало имеет сферическую форму диаметром около 5-10 тысяч световых лет[12] и температуру около 5×105 K[12].

 

Многообразие галактик

Метагалактика - часть Вселенной, доступная современным астрономическим методам исследований - содержит несколько миллиардов галактик - звездных систем, в которых звезды связаны друг с другом силами гравитации. Существуют галактики, включающие триллионы звезд. Наша Галактика - Млечный Путь - также достаточно велика (в ней более 200 млрд. звезд). Самые маленькие галактики содержат звезд в миллион раз меньше. Помимо обычных звезд галактики включают в себя межзвездный газ, пыль, а также различные экзотические объекты: белые карлики, нейтронные звезды, черные дыры. Ближайшими к нам и самыми яркими на небе галактиками являются Магеллановы облака. Они относятся к самым крупным видимым на небе астрономическим объектам. Внешний вид и структура звездных систем весьма различны и в соответствии с этим галактики делятся на морфологические типы: эллиптические, спиральные, неправильные. Наша Галактика принадлежит к типу спиральных.
Галактики редко наблюдаются одиночными. Более 90% ярких галактик входят либо в небольшие группы, содержащие лишь несколько крупных членов, либо в скопления галактик, в которых их насчитывается многие тысячи. В окрестностях нашей Галактики, в пределах полутора мегапарсек от нее, расположены еще около 40 галактик, которые образуют местную группу.
Галактика - cемейство звезд, связанных вместе взаимным гравитационным притяжением, обладающее некоторым отличительным свойством, выделяющим его из других галактик. Диапазон размеров и масс галактик огромен, велико также разнообразие их структур и свойств. Самые маленькие известные галактики - относительно близлежащие карликовые галактики, содержащие только 100000 звезд, что намного меньше, чем в типичном шаровом скоплении.
На другом конце диапазона - самая массивная из известных галактик - гигантская эллиптическая галактика M87, содержащая 3000 млрд. солнечных масс, т.е. приблизительно в 15 раз больше нашей собственной Галактики.
Большинство галактик можно классифицировать, отнеся к одному из известных морфологических типов. Спиральные галактики имеют дискообразную форму с центральным балджем (утолщением), от которого отходят спиральные рукава. В спиральных галактиках с перемычкой балдж пересекается перемычкой из звезд, а рукава кажутся присоединенными к концам перемычки. Спиральные галактики содержат очень яркие молодые звезды и значительные количества межзвездного вещества, сконцентрированного в рукавах.
Эллиптические галактики. К этому типу могут принадлежать и самые маленькие, и самые большие галактики. Предполагается, что они полностью состоят из старых звезд с относительно малым количеством межзвездного вещества. Трехмерная форма галактик эллиптического типа может быть сфероидальной, в том числе и практически сферической.
Третья основная группа - неправильные галактики, которые не являются ни спиральными, ни эллиптическими. Они составляют до четверти всех известных галактик. В видимом свете неправильные галактики не показывают никакой специфической круговой симметрии и имеют хаотический вид. Небольшое число галактик имеет необычную структуру, часто приписываемую гравитационному взаимодействию с другой галактикой.







Самозарождение

Эта теория была распространена в Древнем Китае, Вавилоне и Древнем Египте в качестве альтернативы креационизму, с которым она сосуществовала. Аристотель (384—322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. Согласно этой гипотезе, определённые «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.

С распространением христианства теория спонтанного зарождения жизни оказалась не в чести, но эта идея все продолжала существовать где-то на заднем плане в течение ещё многих веков.

 

Развитие жизни на земле

Катархей (от греч. "ниже древнейшего") - эра, когда была безжизненная Земля, окутанная ядовитой для живых существ атмосферой, лишенной кислорода; гремели вулканические извержения, сверкали молнии, жесткое ультрафиолетовое излучение пронизывало атмосферу и верхние слои воды. Под влиянием этих явлений из окутавшей Землю смеси паров сероводорода, аммиака, угарного газа начинают синтезироваться первые органические соединения, возникают свойства, характерные для жизни. .
Архей - древнейшая геологическая эра Земли (3,5 - 2,6 млрд. лет назад).
Ко времени архея относится возникновение первых прокариот (бактерий и сине-зеленых) - организмов, которые в отличие от эукариот не обладают оформленным клеточным ядром и типичным хромосомным аппаратом (наследственная информация реализуется и передается через ДНК).

Протерозой (с греч. "первичная жизнь) - огромный по продолжительности этап исторического развития Земли (2,6 млрд.-570 млн. лет назад).
Возникновение многоклеточности - важный ароморфоз в эволюции жизни.
Конец протерозоя иногда называют "веком медуз" - очень распространенных в это время представителей кишечнополостных.
Палеозой (от греч. "древняя жизнь") - геологическая эра (570-230 млн. лет) со следующими периодами:

  кембрий (57-5 млн.лет)

  ордовик (5-44 млн. лет)

  силур (44-41 млн. лет)

  девон (41-35 млн. лет)

  карбон (35-285 млн. лет)

  пермь (285-23 млн. лет).

 Мезозой (с греч. "средняя жизнь") - это геологическая эра (230-67 млн.лет) со следующими периодами:

  триас (23-195 млн.лет)

  юра (195-137 млн.лет)

  мел (137-67 млн.лет). .

Кайнозой (от греч. "новая жизнь") - это эра (67 млн. лет - наше время) расцвета цветковых растений, насекомых, птиц и млекопитающих.
Кайнозой делится на два неравных периода: третичный (67-3 млн.лет) и четвертичный (3 млн.лет - наше время).

 







Основная цель науки

Нау́ка — особый вид познавательной деятельности, направленной на получение, уточнение и производство объективных, системно-организованных и обоснованныхзнаний о природе, обществе и мышлении. Основой этой деятельности является сбор научных фактов, их постоянное обновление и систематизация, критический анализи, на этой базе, синтез новых научных знаний или обобщений, которые не только описывают наблюдаемые природные или общественные явления, но и позволяют построить причинно-следственные связи и, как следствие — прогнозировать. Те естественнонаучные теории и гипотезы, которые подтверждаются фактами или опытами, формулируются в виде законов природы или общества.

Наука в широком смысле включает в себя все условия и компоненты научной деятельности:

разделение и кооперацию научного труда

научные учреждения, экспериментальное и лабораторное оборудование

методы научно-исследовательской работы

понятийный и категориальный аппарат

систему научной информации

а также всю сумму накопленных ранее научных знаний.

 

Идея эволюции живой природы

Идея эволюции живой природы возникла в Новое время как противопоставление креационизму (от лат. "созидание") - учению о сотворении мира богом из ничего и неизменности созданного творцом мира. Креацианизм как мировоззрение сложился в эпоху поздней античности и в Средневековье занял господствующие позиции в культуре.

В становлении идеи эволюции органического мира существенную роль сыграла систематика - биологическая наука о разнообразии всех существующих и вымерших организмов, о взаимоотношениях и родственных связях между их различными группами (таксонами). Основными задачами систематики являются определение путем сравнения специфических особенностей каждого вида и каждого таксона более высокого ранга, выяснение общих свойств у тех или иных таксонов. Основы систематики заложены в трудах Дж. Рея (1693) и К. Линнея (1735).

 

Теория Ч.Дарвина

Новый этап в развитии эволюционной теории наступил в 1859 году в результате публикации основополагающей работы Чарльза Дарвина «Происхождение видов путём естественного отбора или сохранение благоприятных рас в борьбе за жизнь». Основной движущей силой эволюции по Дарвину является естественный отбор. Отбор, действуя на особей, позволяет выживать и оставлять потомство тем организмам, которые лучше приспособлены для жизни в данном окружении. Действие отбора приводит к распадению видов на части — дочерние виды, которые, в свою очередь, со временем расходятся до родов, семейств и всех более крупных таксонов.

 

Предмет, задачи и методологическая основа ксе.

В ксе имеет свои задачи формирование у студентов научного мировоззрения и осознания ими принципов и закономерностей развития природы-от микромира до Вселенной и человека. Ноучн мировоззрение отлич от др мировоззрений тем, что строится на основе строгих научных теорий. Курс ксе включает в себя основные концепции таких наук, как физика, биология, химия, астрономия и др. методологическим стержнем является эволюционно-синергетическая парадигма. Ее содерж-е предполаг соед-е принципов универсальн-го эволюционизма и самоорганизации при рассмотрении тех или иных процессов и явлений материального мира.

 

Дата: 2019-12-22, просмотров: 244.