Текст 6. Эффект Доплера для световых волн.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

На скорость света не влияют ни скорость источника света, ни скорость наблюдателя. Постоянство скорости света в вакууме имеет огромное значение для физики и астрономии. Однако частота и длина световой волны меняются с изменением скорости источника или наблюдателя. Этот факт известен как эффект Доплера.

Предположим, что источник, расположенный в т. О, испускает свет длиной волны λ0. Наблюдатели в точках А и В, для которых источник света находится в покое, зафиксируют излучение с длиной волны λ0 (см. рисунок 1). Если источник света начинает двигаться со скоростью V, то длина волны меняется. Для наблюдателя А, к которому источник света приближается, длина световой волны уменьшается. Для наблюдателя В, от которого источник света удаляется, длина световой волны увеличивается (см. рисунок 2). Так как в видимой части электромагнитного излучения наименьшим длинам волн соответствует фиолетовый свет, а наибольшим – красный, то говорят, что для приближающегося источника света наблюдается смещение длины волны в фиолетовую сторону спектра, а для удаляющегося источника света – в красную сторону спектра.

 

Рис. 1

Рис. 2

Изменение длины световой волны зависит от скорости источника относительно наблюдателя (по лучу зрения) и определяется формулой Доплера:

(λλ0)λ0=vc

Эффект Доплера нашел широкое применение, в частности в астрономии, для определения скоростей источников излучения.

Задание №1.

Примерно сто лет назад американский астроном ВестоСлайфер обнаружил, что длины волн в спектрах излучения большинства галактик смещены в красную сторону. Этот факт может быть связан с тем, что

1) галактики разбегаются (Вселенная расширяется).

2) галактики сближаются (Вселенная сжимается).

3) Вселенная бесконечна в пространстве.

4) Вселенная неоднородна.

 

Задание №2.

Наблюдатель, к которому источник света приближается, зафиксирует.

1) Увеличение скорости света и уменьшение длины световой волны.

2) Увеличение скорости света и увеличение длины световой волны.

3) Уменьшение длины световой волны и увеличение её частоты.

4) Увеличение длины световой волны и уменьшение её частоты.

Задание №3.

Эффект Доплера справедлив и для звуковых волн. Что происходит с высотой тона звукового сигнала поезда при его удалении от наблюдателя. Ответ поясните

 

Текст 7. Зелёный луч.

 

Рефракция света в атмосфере – оптическое явление, вызываемое преломлением световых лучей в атмосфере и проявляющееся в кажущемся смещении удалённых объектов. Вследствие того, что атмосфера является средой оптически неоднородной (с высотой меняется температура, плотность, состав воздуха), лучи света распространяются в ней не прямолинейно, а по некоторой кривой линии. Наблюдатель видит объекты не в направлении их действительного положения, а вдоль касательной к траектории луча в точке наблюдения (см. рис. 1).

 

Рис. 1. Криволинейное распространение светового луча в атмосфере (сплошная линия) и кажущееся смещение объекта (пунктирная линия)

Показатель преломления зависит не только от свойств воздушных слоёв атмосферы, но и от длины световой волны (дисперсия света). Поэтому рефракция в атмосфере сопровождается разложением светового луча в спектр. Чем меньше длина волны светового луча, тем более сильную рефракцию он испытывает. Например, фиолетовые лучи преломляются сильнее, чем зелёные, а зелёные – сильнее, чем красные. Поэтому чем меньше длина волны луча, тем сильнее будет видимое смещение за счёт рефракции. В результате верхняя каёмка диска Солнца на восходе и закате кажется сине-зелёной, нижняя – оранжево-красной (рис. 2).

 

Рис. 2. Пояснение к появлению зелёного луча

Дисперсия солнечных лучей в наиболее явном виде проявляется в самый последний момент захода Солнца. Когда Солнце уходит за горизонт, последним лучом мы должны были бы увидеть фиолетовый. Однако самые коротковолновые лучи – фиолетовые, синие, голубые – на долгом пути в атмосфере (когда Солнце уже у горизонта) настолько сильно рассеиваются, что не доходят до земной поверхности. Кроме того, к лучам этой части спектра менее чувствительны глаза человека. Поэтому последний луч заходящего Солнца оказывается яркого изумрудного цвета. Это явление и получило название зелёный луч.

 

Задание №1.

Появление зелёного луча в момент захода Солнца связано

1) только с рефракцией света.

2) только с дисперсией света.

3) только с рассеянием света.

4) с рефракцией, дисперсией и рассеянием света.

 

Задание №2.

В ясную погоду наблюдают цвет Луны при её разных положениях: высоко над горизонтом и вблизи горизонта. В каком случае цвет Луны приобретает красный оттенок? Ответ поясните.

 

Задание №3.

Криволинейное распространение света при прохождении атмосферы объясняется

1) поглощением света в оптически неоднородной среде.

2) рассеянием света в оптически неоднородной среде.

3) преломлением света в оптически неоднородной среде.

4) дисперсией света в оптически неоднородной среде.

 

 

Текст 8. Цвет предметов.

 

Цвет различных предметов, освещённых одним и тем же источником света (например, солнцем), бывает весьма разнообразен. Основную роль в таких эффектах играют явления отражения и пропускания света. При рассмотрении непрозрачного предмета мы воспринимаем его цвет в зависимости от того излучения, которое отражается от поверхности предмета и попадает к нам в глаз. При рассмотрении прозрачного тела на просвет его цвет будет зависеть от пропускания лучей различных длин волн.

Световой поток, падающий на тело, частично отражается (рассеивается), частично пропускается и частично поглощается телом. Доля светового потока, участвующего в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения ρ, пропускания τ и поглощения α. Так, например, коэффициент отражения равен отношению светового потока, отражённого телом, к световому потоку, падающему на тело.

Каждый из указанных коэффициентов может зависеть от длины волны (цвета), благодаря чему и возникают разнообразные эффекты при освещении тел.

Тела, у которых для всех лучей поглощение велико, а отражение и пропускание очень малы, будут чёрными непрозрачными телами (например, сажа). Для красных непрозрачных лепестков розы коэффициент отражения близок к единице для красного цвета (для других цветов очень мал), коэффициент поглощения, наоборот, близок к единице для всех цветов, кроме красного, коэффициент пропускания практически равен нулю для всех длин волн. Прозрачное зелёное стекло имеет коэффициент пропускания, близкий к единице, для зелёного цвета, тогда как коэффициенты отражения и поглощения для зелёного цвета близки к нулю. Прозрачные тела могут иметь разный цвет в проходящем и отраженном свете.

Различие в значениях коэффициентов ρ, τ и α и их зависимость от длины световой волны обусловливает чрезвычайное разнообразие в цветах и оттенках различных тел.

 

Задание №1.

Коэффициент поглощения равен

1) световому потоку, падающему на тело.

2) световому потоку, поглощённому телом.

3) отношению светового потока, падающего на тело, к световому потоку, поглощённому телом.

4) отношению светового потока, поглощённого телом, к световому потоку, падающему на тело.

 

Задание 2.

Для белого непрозрачного тела

1) коэффициенты пропускания и отражения близки к единице для всех длин волн.

2) коэффициенты пропускания и поглощения близки к единице для всех длин волн.

3) коэффициенты пропускания и отражения близки к нулю для всех длин волн.

4) коэффициенты пропускания и поглощения близки к нулю для всех длин волн.

 

Задание 3.

Хлорофилл – зелёное вещество, содержащееся в листьях растений и обусловливающее их зелёный цвет. Спиртовой раствор (вытяжка) хлорофилла оказывается на просвет красным, а в отраженном свете – зелёным. Это означает, что в растворе

1) коэффициенты пропускания и отражения для зелёного цвета близки к единице.

2) коэффициенты пропускания и отражения для красного цвета близки к единице.

3) коэффициенты пропускания для красного цвета и отражения для зелёного цвета близки к единице.

4) коэффициенты пропускания для зелёного цвета и отражения для красного цвета близки к единице.

 

 

Текст 9.Фотолюминесценция.

 

Некоторые вещества при освещении электромагнитным излучением сами начинают светиться. Такое свечение, или люминесценция, отличается важной особенностью: свет люминесценции имеет иной спектральный состав, чем свет, вызвавший свечение. Наблюдения показывают, что свет люминесценции характеризуется большей длиной волны, чем возбуждающий свет. Например, если пучок фиолетового света направить на колбочку с раствором флюоресцеина, то освещённая жидкость начинает ярко люминесцировать зелёно-жёлтым светом.

Некоторые тела сохраняют способность светиться некоторое время после того, как освещение их прекратилось. Такое послесвечение может иметь различную длительность: от долей секунды до многих часов. Принято называть свечение, прекращающееся с освещением, флюоресценцией, а свечение, имеющее заметную длительность, фосфоресценцией.

Фосфоресцирующие кристаллические порошки используются для покрытия специальных экранов, сохраняющих своё свечение две-три минуты после освещения. Такие экраны светятся и под действием рентгеновских лучей.

Очень важное применение нашли фосфоресцирующие порошки при изготовлении ламп дневного света. В газоразрядных лампах, наполненных парами ртути, при прохождении электрического тока возникает ультрафиолетовое излучение. Советский физик С.И. Вавилов предложил покрывать внутреннюю поверхность таких ламп специально изготовленным фосфоресцирующим составом, дающим при облучении ультрафиолетом видимый свет. Подбирая состав фосфоресцирующего вещества, можно получить спектральный состав излучаемого света, максимально приближённый к спектральному составу дневного света.

Явление люминесценции характеризуется крайне высокой чувствительностью: достаточно иногда 10 – 10 г светящегося вещества, например в растворе, чтобы обнаружить это вещество по характерному свечению. Это свойство лежит в основе люминесцентного анализа, который позволяет обнаружить ничтожно малые примеси и судить о загрязнениях или процессах, приводящих к изменению исходного вещества.

 

Задание 1.

Ткани человека содержат большое количество разнообразных природных флуорофоров, которые имеют различные спектральные области флуоресценции. На рисунке представлены спектры свечения основных флуорофоров биологических тканей и шкала электромагнитных волн.

 

 

Согласно приведённым данным пироксидин светится

1) красным светом.

2) жёлтым светом.

3) зелёным светом.

4) фиолетовым светом.

 

Задание 2.

Два одинаковых кристалла, имеющих свойство фосфоресцировать в жёлтой части спектра, были предварительно освещены: первый красными лучами, второй синими лучами. Для какого из кристаллов можно будет наблюдать послесвечение? Ответ поясните.

 

Задание 3.

При исследовании пищевых продуктов люминесцентный метод можно использовать для установления порчи и фальсификации продуктов.
В таблице приведены показатели люминесценции жиров.

Вид жира

Цвет люминесценции

Масло сливочное

От бледно- до ярко-жёлтого

Маргарин сливочный

Голубоватый

Маргарин «Экстра»

Голубоватый

Сало растительное

Интенсивно-голубой

Цвет люминесценции сливочного масла изменился с жёлто-зелёного на голубой. Это означает, что в сливочное масло могли добавить

1) только маргарин сливочный.

2) только маргарин «Экстра».

3) только сало растительное.

4) любой из указанных жиров.

 


Дата: 2019-12-09, просмотров: 519.