Взаимодействие между МС и внешней пакетной сетью предполагает «прозрачную» работу с открытыми, т.е. известными обеим сторонам IP-адресами. Однако прежде чем пакет данных от МС поступит в GPRS-шлюз своей сети, он должен, пройдя по нескольким функциональным узлам, оказаться в ОУ (аналогично ситуация складывается при приеме пакетных данных от внешней МС).
В принципе возможно так организовать передачу пакетов, что весь маршрут, в том числе и внутри сети GPRS, будет проходить по открытым IP-адресам. Однако такая организация представляется далеко не лучшим решением задачи по многим параметрам, в том числе с точки зрения информационной безопасности. Исходя из этого целесообразно построение маршрута внутри сети GPRS (прежде всего между ОУ и GPRS-шлюзом), при котором передача пакетов будет осуществляться по внутренним, неизвестным для внешних пользователей IP-адресам.
Реализация указанной концепции осуществляется путем создания специального «туннеля» между ОУ и GPRS-шлюзом (рис. 15.9), при котором внешние IP-пакеты помещаются сначала в специальные «контейнеры», а затем — во внутренние IP-пакеты, после чего передаются внутри сети GPRS. При этом в процессе туннелирования происходит последовательная инкапсуляция пакетов, т.е. добавление к заголовку предыдущего уровня заголовка текущего уровня (рис. 15.10).
Организация процессов туннелирования в Gn-интерфейсе основана на использовании Интернет-протокола и протокола па кетного туннелирования (GTP — GPRS Tunneling Protocol), поэтому туннельные пакеты часто называют GTP-пакетами. Структура IP-пакета была показана в табл. 14.1. Кратко рассмотрим структуру GTP-пакета.
![]() | |||
![]() |
GTP-пакет состоит из двух частей: заголовка и информационной части. Заголовок содержит 16 байт и включает в себя следующую информацию:
• тип сообщения (значения 1...52 для сигнализации и 255 — для данных);
• длину сообщения в байтах;
• последовательность значений для идентификации транзакций сигнальных сообщений и счетчик дейтаграмм;
• число LLC-блоков, используемых для процедуры переопределения области маршрутизации, применяемой для координации передачи данных между МС и ОУ;
• флаг, отражающий включение числа LLC-блоков;
• туннельный идентификатор (TID — Tunnel IDentifier), содержащий код страны (МСС), код мобильной сети (MNC), идентификационный код мобильной станции (MSIN) и идентификатор точки доступа сетевой услуги (NSAPI).
Наряду с рассмотренными протоколами в Gn-интерфейсе также используются протоколы передачи данных (UDP/TCP — User Datagram Protocol / Transmission Control Protocol), служащие для передачи инкапсулированных GTP-пакетов между магистральными узлами с подтверждением (TCP) или без подтверждения (UDP) принятых данных, и протоколы L 1 и L 2, являющиеся независимыми протоколами физического и канального уровней, так как спецификациями GSM они не определены, и их реализация находится в компетенции оператора (внутри сети GPRS) или должна быть согласована с оператором внешней пакетной сети.
Радиоинтерфейс сети GPRS
Как уже говорилось, для физической передачи информации внутри сети GPRS организован канал пакетной передачи данных (см. рис. 15.5), ресурсы которого распределены на две части: для
звокупности всех МС и для остальной сети. Организация различных логических каналов в физическом канале аналогична организации их в традиционной сети GSM и достигается путем использования мультикадровой структуры.
При пакетной передаче организован 52-кадровый мультикадр [(рис. 15.11). В отличие от традиционной GSM, где реализована структура 51/26-кадрового мультикадра, в PDCH мультикадр состоит Ез 52 кадров МДВР и содержит 12 блоков В0...В11 по четыре [ кадра в каждом, два пустых (резервных) кадра и два кадра, предназначенных для логического канала РТССН. Напомним, что в одном блоке содержится последовательность из четырех информационных пакетов, размещенных в четырех последовательных (а не в одном) кадрах на одной рабочей частоте в одном и том же слоте.
Каждый блок используется для передачи сообщения одного из каналов пакетного трафика или каналов управления, за исключением канала РТССН, информация которого расположена в 13-м (PTCCH/U) и 39-м (PTCCH/D) кадрах. В восходящем направлении одна МС разделяет канал PTCCH/U с 15 другими МС, поэтому можно считать, что МС передает сигнал доступа (access burst) один раз за восемь мультикадров (один раз за 1,92 с). Одно сообщение канала PTCCH/D, содержащее информацию для нескольких МС, занимает четыре кадра, поэтому его передают в течение двух мультикадров.
Кадры 26-й и 52-й свободны, поэтому они, а также упомянутые 13-й и 39-Й кадры используются для следующих целей:
• измерение уровней сигналов и приема системной информации от соседних БС;
• проведение измерений, необходимых для управления мощностью;
выполнение процедуры обновления времени упреждения.
|
Из приведенной в подразд. 15.3 классификации видно, что радиоинтерфейс сети GPRS состоит из независимых и несимметричных1 логических каналов, следовательно, должен существовать некоторый механизм распределения радиоресурсов. Конкретно, если передача пакетов в нисходящем канале, т. е. от сети к множеству МС, не приводит к возникновению конфликтов, то при организации передачи в восходящем канале, при которой МС совместно используют один и тот же слот, необходима процедура предотвращения возможных коллизий.
Как видно из представленной на рис. 15.11 структуры мультикадра, при наличии 12 блоков возможно мультиплексирование 12 различных абонентов в одном слоте восходящего канала, при этом каждая МС должна знать, какой блок и в каком канале PDCH она должна использовать.
Для решения такой задачи используется специальный флаг установки соединения в восходящем канале (USF — Uplink State Flag), который передается в нисходящем направлении по каналу PAGCH и используется в качестве признака того, какая МС имеет право на использование данного блока. Отслеживая значения флагов, МС имеет возможность передавать в восходящем направлении блоки, имеющие то же самое значение флага, которое ей изначально было выделено. Флаг состоит из трех разрядов и соответственно имеет восемь значений, поэтому в действительности при передаче информации в восходящем направлении только восемь (а не 12) абонентов имеют возможность одновременно делить между собой один слот канала PDCH.
На рис. 15.12 абоненту МС1 выделено значение флага USF = 1 и обеспечена возможность использования блоков В0...В4, а або-
1 Несимметричность означает, что не все каналы функционируют в обоих направлениях.
Число слотов | Скорость передачи, Кбит/с | |||
CS1 | CS2 | CS3 | CS4 | |
1 3 8 | 9,1 27,2 72,0 | 13,4 40,2 107,2 | 15,6 46,8 124,8 | 21,4 64,2 171,2 |
ненту МС2 — значение USF = 2 и возможность использования
блоков В5...В9.
В целях обеспечения высокой защищенности блоков, передаваемых по радиоканалу, в структуру передаваемой информации [вводится механизм помехоустойчивого кодирования. При этом в GPRS предусмотрено четыре возможных схемы кодирования: CS1...CS4. Схема CS1 обладает самой высокой степенью исправления ошибок и самой низкой скоростью передачи данных, в то время как в схеме CS4 исправление ошибок вообще отсутствует, зато при этом реализуется наивысшая скорость передачи. В табл. 15.1 приведены значения скоростей передачи для различных схем кодирования при использовании одного, трех или восьми слотов. | В традиционной GSM обычно используется 1 слот для передачи в обоих направлениях, в GPRS в целях обеспечения более высокой скорости передачи возможно использование нескольких (до (восьми) слотов, причем в восходящем и нисходящем направлениях.
Дата: 2019-12-22, просмотров: 291.