Шаговый двигатель. Устройство, принцип работы, управление
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Шаговые двигатели широко используются в принтерах, автоматических инструментах, приводах дисководов, автомобильных приборных панелях и других приложениях, требующих высокой точности позиционирования и микропроцессорного управления. Как известно, такое управление требует использования специальной логики и высокоточных драйверов, которые могут быть реализованы на дискретной элементной базе, что увеличивает сложность схемы и ее стоимость.

Небольшие шаговые двигатели часто используются, например, в автомобильных приборных панелях (инструментальных кластерах) и выполняют там функции вращения стрелок спидометра, тахометра, указателя температуры охлаждающей жидкости и уровня топлива. При этом по сравнению с традиционно используемыми гальванометрическими системами отсутствует вибрация стрелки, увеличивается точность показаний.

Двигатели постоянного тока (ДПТ) начинают работать сразу, как только к ним будет приложено постоянное напряжение [19], [20]. Переключение направления тока через обмотки ротора осуществляется механическим коммутатором - коллектором. Постоянные магниты при этом расположены на статоре. Шаговый двигатель может быть рассмотрен как ДПТ без коммутатора. Обмотки его являются частью статора. На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала. Все коммутации производятся внешними схемами. Обычно система мотор - контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению. Цикличность позиционирования ротора зависит от его геометрии.

Принято различать шаговые двигатели и серводвигатели. Принцип их действия во многом похож, и многие контроллеры могут работать с обоими типами. Основное отличие заключается в количестве шагов на цикл (один оборот ротора). Серводвигатели требуют наличия в системе управления аналоговой обратной связи, в качестве которой обычно используется потенциометр. Ток в этом случае обратно пропорционален разности желаемого и текущего положений. Шаговые двигатели преимущественно используются в системах без обратных связей, требующих небольших ускорений при движении.

Шаговые двигатели (ШД) делятся на две разновидности: двигатели с постоянными магнитами и двигатели с переменным магнитным сопротивлением (гибридные двигатели). С точки зрения контроллера отличие между ними отсутствует. Двигатели с постоянными магнитами обычно имеют две независимые обмотки, у которых может присутствовать или отсутствовать срединный отвод (см. рис.1.2.1).


Рис.1.2.1 Униполярный ШД с постоянными магнитами.

Биполярные шаговые двигатели с постоянными магнитами и гибридные двигатели сконструированы более просто, чем униполярные двигатели, обмотки в них не имеют центрального отвода (см рис.2.2.2).


Рис.2.2.2 Биполярный и гибридный ШД.

За это упрощение приходится платить более сложным реверсированием полярности каждой пары полюсов мотора.

Шаговые двигатели имеют широкий диапазон угловых разрешений. Более грубые моторы обычно вращаются на 90° за шаг, в то время как прецизионные двигатели могут иметь разрешение 1,8° или 0,72° на шаг. Если контроллер позволяет, то возможно использование полушагового режима или режима с более мелким дроблением шага (микрошаговый режим), при этом на обмотки подаются дробные значения напряжений, зачастую формируемые при помощи ШИМ - модуляции.

Если в процессе управления используется возбуждение только одной обмотки в любой момент времени, то ротор будет поворачиваться на фиксированный угол, который будет удерживаться, пока внешний момент не превысит момента удержания двигателя в точке равновесия.

Для правильного управления биполярным шаговым двигателем необходима электрическая схема, которая должна выполнять функции старта, стопа, реверса и изменения скорости. Шаговый двигатель транслирует последовательность цифровых переключений в движение. "Вращающееся" магнитное поле обеспечивается соответствующими переключениями напряжений на обмотках. Вслед за этим полем будет вращаться ротор, соединенный посредством редуктора с выходным валом двигателя.

Каждая серия содержит высокопроизводительные компоненты, отвечающие все возрастающим требованиям к характеристикам современных электронных применений.

Схема управления для биполярного шагового двигателя требует наличия мостовой схемы для каждой обмотки. Эта схема позволит независимо менять полярность напряжения на каждой обмотке. На рис.3.2.3 показана последовательность управления для режима с единичным шагом.


Рис.3.2.3 Управляющая последовательность для режима с единичным шагом.

На рис.4.2.3 показана последовательность для полушагового управления.


Рис.4.2.3 Управляющая последовательность для режима с половинным шагом.

 

Дата: 2019-12-22, просмотров: 280.