Грунтовые основания. Происхождение грунтов.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Всякое сооружение покоится на грунтовом основании. В зависимости от геологического строения участка застройки строение основания даже расположенных вблизи сооружений может быть различным (рис. 1.1). Обычно основание состоит из нескольких типов грунтов, которые определенным образом сочетаются в пространстве (сооружения А, В, Г, Д на рис. 1.1). В частном случае основание может состоять из грунта одного типа (сооружение Б на рис. 1.1).

 

Сооружение и основание составляют единую систему. Свойства грунтов основания, их поведение под нагрузками от сооружения во многом определяют прочность, устойчивость и нормальную эксплуатацию сооружения. Поэтому инженер-строитель должен хорошо понимать, что представляют собой грунты, каковы их особенности по сравнению с другими конструкционными материалами (бетон, железобетон, металл, кирпич и т.п.), каким образом залегают грунты в основании сооружений, что определяет свойства грунтов и грунтовых оснований.

Грунтом называют всякую горную породу, используемую при строительстве в качестве основания сооружения, среды, в которой сооружение возводиться, или материала для сооружения.

Горной породой называют закономерно построенную совокупность минералов, которая характеризуется составом, структурой и текстурой.

Под с о с т а в о м подразумевают перечень минералов, составляющих породу. С т р у к т у р а - это размер, форма и количественное соотношение слагающих породу частиц. Т е к с т у р а - пространственное расположение элементов грунта, определяющее его строение.

Термин «грунт» широко применяют в строительстве, заменяя более широкий термин «горная порода», которая используется в геологии, географии, горном и геолого-разведочном деле. В инженерной геологии термин «горная порода» применяется при описании геологической среды за пределами основания и на допроектных стадиях исследований.

Горная порода, а следовательно, и грунт представляют собой не случайное скопление минералов, а закономерную определенным образом построенную совокупность. Это имеет исключительно большое значение для строительства. Действительно, совокупностей минералов может быть много. Закономерно построенных совокупностей горных пород в природе выделяется большое, но ограниченное количество. Инженерная геология изучает закономерности образования и свойства горных пород как грунтов. Наличие в природе однотипных грунтов, широко распространенных в разных частях Земли, служит основанием для разработки стандартных приемов строительства и применения типовых конструкций фундаментов. Так. Существование слабых водонасыщенных грунтов – илов – уже в древности привело к идее устройства фундаментов; особые свойства не менее широко распространенного лессового грунта потребовали разработки специальных способов строительства и т.п. В связи с этим, прежде чем рассматривать методы расчета и проектирования оснований и фундаментов, необходимо изучить основные типы грунтов, их физические свойства, особенности строения оснований.

Закономерности состава и строения грунтов теснейшим образом связаны с условиями их происхождения. В инженерной геологии происхождение грунтов детально изучено в разных условий. Происхождение положено в основу классификации грунтов (ГОСТ 25100-82).

Все грунты разделяются на естественные – магматические, осадочные,

метаморфические – и искусственные – уплотненные, закрепленные в естественном состоянии, насыпные и намывные.

Магматические (изверженные) горные породы образуются при медленном остывании и отвердении огненно-жидких расплавов магмы в верхних слоях земной коры (интрузивные, или глубинные, породы-граниты, диориты, габбро и др.), а также при быстром остывании излившегося на поверхность земли расплава (эффузивные, или излившиеся, - бальзаты, порфиры и др.)

Осадочные горные породы образуются в результате выветривания, перемещения, осаждения и уплотнения продуктов разрушения исходных пород магматического, метаморфического или осадочного происхождения, образовавшихся ранее. В зависимости от степени упрочнения различают сцементированные (песчинки, доломиты, алевролиты и т.п.) и несцементированные осадочные породы (крупнообломочные, песчаные, пылевато-глинистые грунты, лессы, илы, торфы, почвы и т.п.).

Метаморфические горные породы образуются в недрах из осадочных, магматических или метаморфических пород путем их перекристаллизации под воздействием высоких давлений и температур в присутствии горячих растворов. Наиболее типичные метаморфические горные породы – сланцы, мраморы, кварциты, гнейсы.

Горные породы метаморфического, магматического происхождения и сцементированные осадочные породы обладают жесткими связями между частицами и агрегатами и относятся к классу с к а л ь н ы х г р у н т о в. Осадочные несцементированные породы не имеют жестких связей и относятся к классу н е с к а л ь н ы х грунтов.

В самых верхних слоях земной коры, называемых зоной современного выветривания. Под влиянием колебаний температуры, изменения состояния и химического состава воды, газов, деятельности растительных и животных организмов и т.п. развиваются процессы выветривания – физического, химического. Органического разрушения минералов и горных пород. Продукты разрушения верхних зон коры выветривания могут перемещаться водой или воздухом, переносится на большие расстояния и вновь откладываться на новых территориях. Различие условий происхождения и дальнейшего изменения являются причиной разнообразия строения, состава, состояния и условий залегания грунтов в верхних слоях земной коры.

К искусственным скальным грунтам относятся все природные грунты любого происхождения, специально закрепленные материалами, приводящими к возникновению жестких связей (цементные и глинисто-силикатные растворы, жидкое стекло и т.п.). К классу нескальных искусственных грунтов относятся несцементированные осадочные породы, подвергнутые специальному уплотнению в природном залегании, насыпные, намывные грунты, а также твердые промышленные отходы (шлаки, золы и т.п.).

 

Состав грунтов.

 

 

Состав грунтов в значительной мере определяет их физические и механические свойства. В связи с этим он достаточно хорошо изучен в разделе инженерной геологии – грунтоведения.

В общем случае, с физических позиций, грунт состоит из трех компонентов: твердой, жидкой, газообразной.

Иногда в грунте выделяют биоту – живое существо. Это оправдано с общенаучной точки зрения и полезно практически, так как жизнедеятельность организмов может оказывать существенное воздействие на свойства грунтов. Активизация жизнедеятельности бактерий, как правило, снижает прочность грунта, а их отмирание приводит к повышению его прочности. Однако пока свойства биоты не нашли отражения в моделях механики грунтов, и мы будем рассматривать грунт как трехкомпонентную систему.

Твердая, жидкая и газообразная компоненты находятся в постоянном взаимодействии, которое активизируется в результате строительства. В зоне влияния промышленных и гражданских сооружений, т.е. на относительно небольших глубинах, в грунтах обычно присутствуют все три компоненты одновременно. На больших глубинах и в некоторых особых условиях грунт может состоять из двух и даже одной компоненты. Например. В зоне вечной мерзлоты в составе грунта может встретится твердая и газообразная компоненты либо только твердая, если все пространство между частицами заполнено льдом. В зоне положительной температуры ниже уровня подземных вод грунт обычно состоит из твердой и жидкой компонент. В механике грунтов такой грунт часто называют «грунтовой массой». Газ в условиях высокого гидростатического давления полностью растворен в воде, но может выделиться из нее при понижении внешнего давления или повышении температуры. При внешних воздействиях, например, от строительства и эксплуатации зданий, однокомпонентная система грунта может переходить в двухкомпонентную, а двухкомпонентная – в трехкомпонентную. При этом, как правило, ухудшаются свойства грунта.

Было бы сравнительно просто решать задачи фундаментостроения, если бы грунт можно было рассматривать как механическую систему, состоящую из твердого. Жидкого и газообразного веществ с фиксированными независимыми свойствами каждой компоненты. В действительности дело обстоит сложнее. На свойства грунта, как системы, значительное влияние оказывает минеральный и химический состав вещества, наличие биологически активной составляющей. Химические. Физические, физико-химические и биологические процессы в грунтах протекают в сложном взаимодействии, сливаясь в единый геологический процесс, который изменяет свойства грунта во времени до строительства, при строительстве и впоследствии при эксплуатации сооружений.

Твердые частицы грунтов состоят из породообразующих минералов с различными свойствами. Ч а с т ь м и н е р а л о в и н е р т н а по отношению к воде и практически не вступает во взаимодействие с растворенными в ней веществами (кварц, полевые шпаты, слюда, авгит, кремень, роговая обманка и др.). Эти минералы не меняют свойств не только при изменении содержания воды, но и в широком диапазоне температур. Очевидно, что грунты. Полностью сложенные такими минералами, обладают наиболее благоприятными строительными свойствами. Из инертных минералов состоят все магматические горные породы, подавляющее большинство метаморфических часть осадочных. Среди осадочных пород этими минералами сложены пески и крупнообломочные грунты, а также образующие из них при цементации песчинки и конгломераты.

Большое влияние на свойства грунтов оказывают р а с в о р и м ы е в в о д е м и н е р а л ы. К ним относятся галит NCl, гипс CaSO4 ̇ 2H2O, кальцит CaCO3 некоторые другие. Такие распространенные горные породы, как мрамор, известняк, гипс, сложены растворимыми минералами.

Г л и н и с т ы е м и н е р а л ы составляют третью группу. Они нерастворимы в воде в отличии от минералов предыдущей группы, но их никак нельзя приравнять к инертным минералам первой группы. В силу чрезвычайно малых размеров кристаллов глинистые минералы обладают высокой коллоидной активностью. К ним относятся каолинит. Монтмориллонит, иллит, и другие минералы, кристаллы которых имеют выраженное свойство гидрофильности. Из-за мельчайших размеров и высокоразвитой поверхности глинистые минералы активно взаимодействуют с жидкой составляющей грунтов. Поэтому уже малое содержание их в общей массе грунта резко изменяет его свойства.

О р г а н и ч е с к о е в е щ е с т в о в грунтах у поверхности земли находятся в виде микроорганизмов, корней растений и гумуса, а в глубоких горизонтах – в виде нефти. Бурого и каменного угля. Повсеместно на равнинных площадях с поверхности залегает почва, которая содержит 0,5…5% органических соединений. Коллоидная активность гумуса выше, чем даже глинистых минералов.

Жидкая составляющая грунтов. К р и с т а л и з а ц и о н н а я в о д а принимает участие в строении кристаллических решеток минералов и находится внутри частиц грунта. Удаление ее путем длительного нагревания грунта может привести к разложению минералов и значительному изменению свойств грунта.

Вода, заполняющая поры («поровая вода»), может растворять содержащиеся в ней соли и всегда является химическим раствором обычно слабой концентрации.

Свободная вода в грунте подчиняется законам гидравлики. Она передает гидростатическое давление и может перемещаться под воздействием разности напоров. Часто свободную воду подразделяют на гравитационную и капиллярную. Практически вся вода, содержащаяся в трещиноватых скальных породах, крупнообломочных, гравелистых и крупных песках, относится к гравитационной. Капиллярная вода может содержаться в песках средней крупности, мелких и особенно пылеватых песках и глинистых грунтах.

Сложное и разнообразное взаимодействие твердых частиц грунта с водой очень сильно влияет на свойства грунта. Например. замерзание пылевато-глинистых грунтов происходит постепенно при понижении отрицательной температуры: сначала в лед переходит свободная вода, затем периферийные и, наконец, более глубокие слои рыхлосвязанной воды. Фильтрация свободной воды в грунте возникает сразу же после появления разности напоров. Однако для перемещения слоев даже рыхлозвязанной воды требуется приложение тем больших силовых воздействий, чем ближе эти слои находятся к поверхности частиц. В то же время, если по каким либо причинам. Например из-за перепада температур в зоне замерзания грунта, соседние частицы будут иметь разные по толщине слои связанной воды. Возможно возникновение м и г р а ц и и - перемещение связанной воды из более толстых пленок в более тонкие. Если зона замерзания грунта соединена капиллярной водой с уровнем подземных вод, то объем воды, подтягиваемой в зону замерзания, может быть весьма значительным. Здесь важно отметить. Что знание физико-химических особенностей взаимодействия твердых частиц с водой в грунте позволяет не только объяснить многие важные для практики строительства инженерные мероприятия.

Газообразная составляющая грунта. Содержание воды и газов в грунте зависит от объема его пор: чем больше поры заполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена атмосферным воздухом, ниже – азоном, метаном, сероводородом и другими газами. Необходимо подчеркнуть, что метан, сероводород, угарный газ ядовиты, и могут содержаться в грунте в концентрациях, опасных для жизни работающих в слабо проветриваемых выемках. Интенсивность газообмена между атмосферой и грунтом зависит от состава и состояния грунта и повышается с увеличением содержания и размеров трещин, пустот, пор. В газообразной составляющей всегда присутствуют пары воды.

Газы в грунте могут быть в с в о б о д н о м с о с т о я н и и или р а с т в о р е н ы в в о д е. Свободный газ подразделяется на незащемленный сообщающийся с атмосферой, и защемленный, находящийся в контактах между частицами и пленками воды в виде мельчайших пузырьков в воде. В поровой воде всегда содержится то или иное количество растворенного газа. Повышение давления или понижение температуры приводит к увеличению количества растворенного газа.

Содержание в грунте защемленного и растворенного в воде газа существенно сказывается на свойствах грунта и протекающих в них процессах. Уменьшение давления вследствие разработки котлована или извлечения образца грунта на поверхность может привести к выделению пузырьков газа и разрушению природной структуры грунта. Наоборот, увеличение давления при передаче нагрузки от сооружения может сопровождаться повышением содержания растворенного в воде газа. В то же время увеличение содержания в воде пузырьков воздуха может увеличить сжимаемость воды в сотни раз и сделать ее соизмеримой со сжимаемостью скелета грунта.

Наблюдения показывают, что при подтоплении территории (повышении уровня подземных вод) в обводненном грунте на многие годы, если не на десятилетия, задерживается защемленный газ. Э то имеет большое значение, в частности при сейсмическом микрорайонировании. На обводненных грунтах сейсмическая бальность выше. Защемленный воздух поднимает ее дополнительно, так как снижает скорость прохождения сейсмических волн.

Итак, грунт состоит из твердой, жидкой и газообразной компонент. В каждой из трех компонент чаще в малом и незначительном, а иногда и в существенном количестве содержатся микроорганизмы. Из всех составляющих грунта наиболее стабильной является твердая компонента. Жидкая (вода0 при отрицательных температурах переходит в твердое состояние (лед), может истекать, испаряться. Газ при перемене условий растворяется, вытесняется жидкостью или другими газами. Очевидно, что свойства грунтов зависят от состава, состояния и взаимодействия слагающих его компонент.

 

 

2.3 Форма, размеры и взаимное расположение частиц в грунте.

 

Совокупность твердых частиц, состоящих из минерального вещества, образует как бы каркас, с к е л е т грунта. Поровая вода и газ как сплошная среда располагаются в порах и трещинах между частицами. Форма частиц может быть угловатой и округлой. Угловатая форма характерна для мельчайших кристаллов, которые не округляются при соударениях из-за их исключительно малой массы и значительной прочности. Среди крупных обломков выделяются угловые (глыбы, щебень, дресва) и окатанные (валуны, галька, гравий).

Для удобства классификации частицы, близкие по крупности, объединяются в определенные группы (гранулометрические фракции), которым присваиваются следующие наименования (табл. 1.1).

Таблица 1.1. Классификация частиц грунта по размерам.

 

Наименование частиц Размер частиц, мм
Крубнообломочные Глыбы и валуны Щебень и галька Дресва и гравий   Песчаные Крупные Средние Мелкие Тонкие Пылевато-глинистые Пылеватые Глинистые     Более 200 200…10 10…2     2…0,5 0,5…0,25 0,25…0,10 0,10…0,05 0,05…0,005 Мене 0,005

 

Природные грунты состоят из совокупности частиц разного размера. Пожалуй, только морские отложения бывают хорошо отсортированы: на песчаном морском пляже не встречаются ни крупнообломочные. Ни пылевато-глинистые частицы. Речные пески значительно менее отсортированы. Здесь можно встретить не только песчаные, но и пылевато-глинистые частицы. Речные пески значительно менее отсортированы. Здесь можно встретить не только песчаные, но и пылевато-глинистые частицы. Еще более неоднородны грунты другого образования.

В зависимости от соотношения в грунте частиц того или иного размера они разделяются на три группы: крупнообломочные, песчаные и пылевато-глинистые грунты.

 

 

Дата: 2019-12-22, просмотров: 270.