На рис. 15, а и б приведена распространенная схема стартерного двухлампового ПРА с расщепленной фазой и показана векторная диаграмма пускового режима. Емкость балластного конденсатора Сб в таких схемах обычно несколько ниже (на 5-15 %) емкости компенсирующего конденсатора в одноламповой индуктивной схеме к лампе той же мощности. Применяя вместо двух схем с индуктивными балластами и компенсирующими конденсаторами одну схему с расщепленной фазой, можно сократить ёмкость балластного конденсатора не менее чем в 2 раза. Однако в этом случае балластный конденсатор, как это видно из рис. 15,б, должен иметь напряжение, превышающее напряжение сети.
Преимуществом схем с расщепленной фазой является также снижение пульсации светового потока в светильнике Оптимальным является случай, когда коэффициент мощности каждой из цепей включения ламп равен 0,7. В этом случае угол сдвига между кривыми световых потоков ламп составляет 90°, а коэффициент пульсации снижается в 2-4 раза по сравнению с пульсацией светового потока одной лампы. Большинство стартерных схем при работе с ЛЛ имеет cosф=0,5 как для индуктивной, так и для емкостной цепи. В этом случае угол сдвига между кривыми световых потоков ламп в индуктивной схеме ф1 и
Рисунок 15. Двухламповая схема включения ЛЛ с расщепленной фазой: а- схема ПРА; б- векторная диаграмма рабочего режима; в- диаграмма пульсации светового потока.
емкостной ф2 возрастает до 120° (рис. 15, в) и коэффициент пульсации несколько больше. Для ламп, рассчитанных на работу от напряжения 127 В и имеющих cosф≈0,3, при их включении в сеть напряжением 220 В применение двухламповых схем с расщепленной фазой не дает ощутимого эффекта по снижению пульсации светового потока. Поэтому такие лампы включают в сеть по схеме последовательного включения, обеспечивая снижение пульсации светового потока только для четырехламповых светильников.
Применение двухламповых схем последовательного включения в основном преследует две цели: создать наилучшие условия для ЛЛ, которые при включении в сеть с повышенным напряжением могут зажигаться в режиме с холодными или недогретыми электродами; повысить экономичность ПРА, т. е. снизить его массу, габаритные размеры, стоимость и потери мощности. Кроме того, применяя схемы последовательного включения, можно унифицировать некоторые ПРА, что будет показано ниже.
На рис. 16 приведена наиболее простая схема включения двух ЛЛ с двумя стартерами. Каждый из стартеров выбирается на то напряжение, для которого предназначена лампа.
Рисунок 16. Схема последовательного включения двух ЛЛ с двумя стартерами.
Преимуществом такой схемы помимо её простоты является возможность использовать один и тот же дроссель для включения одной лампы или двух ламп той же суммарной мощностью. Например, дроссель к лампе мощностью 40 Вт можно применять для включения двух ламп мощностью по 20 Вт. Надежность зажигания ламп в последовательных схемах повышается при шунтировании одной из ламп конденсатором небольшой емкости (0,05 мкФ), что обеспечивает пробой сначала незашунтированной лампы, а затем шунтированной. Схемы последовательного включения с индуктивно-емкостным балластом выполняют как сочетание дросселя и последовательно включенного с ним балластного конденсатора, а также с дросселем с дополнительной обмоткой, которая включается в цепь незашунтированного стартера. Этим достигается увеличение тока подогрева лампы и повышение, как надежности зажигания, так и срока службы ламп.
Рассмотренная схема, как и все схемы последовательного включения, обладает тем недостатком, что включение и работа ламп взаимосвязаны. При не зажигании одной лампы не зажигается и вторая, при выходе из строя одной лампы погаснет вторая. Поэтому разработаны многочисленные схемы последовательного включения ламп, лишенные в той или иной степени этого недостатка.
ТРЕБОВАНИЯ К СТАРТЕРНЫМ ПРА
Перечислим основные требования к параметрам стартерных ПРА для ЛЛ:
1. Пусковой ток должен находиться в определенных пределах при допустимых значениях-сети (обычно ±10 % номинального напряжения сети) и изменениях параметров ПРА. Для большинства ЛЛ пусковой ток должен находиться в пределах от 0,9 до номинальных токов лампы.
2. Рабочий ток лампы должен находиться в определенных пределах. В ГОСТ 16809-78 нормируется значение рабочего тока не непосредственно, а как отношение тока номинальной лампы, включенной с данным стартерным ПРА и с образцовым-измерительным дросселем (ДОИ). Значение рабочего тока номинальной лампы, включенной с данными ПРА, при номинальном напряжении сети не должно превышать 1,15 тока этой же лампы, включенной с ДОИ на номинальное для него напряжение. Люминесцентные лампы при их включении со стартерными ПРА имеют разброс рабочих токов в пределах 20 30 % номинального значения.
3. Мощность лампы нормируется не непосредственно, а как отношение мощности номинальной лампы, включенной с данным ПРА, к мощности этой же лампы, включенной с ДОИ. Стартерный ПРА должен обеспечить мощность номинальной лампы в определенных пределах при напряжении питания, равном 0,9 и 1,1 номинального напряжения сети. При напряжении 0,9 номинального стартерный ПРА должен обеспечивать относительную мощность лампы не ниже 0,85, а при напряжении 1,1 номинального — не выше 1,15 мощности номинальной лампы, включенной с ДОИ на такое же напряжение.
4. Коэффициент амплитуды тока лампы, работающей со стартерным ПРА, не должен превышать 1,7.
Нормирование перечисленных выше параметров обусловлено требованием обеспечить нормальную работу и срок службы ЛЛ в стартёрных схемах. Параметры стартеров для таких схем также должны обеспечивать максимальный срок службы ламп и надежность их зажигания. Кроме того, ПРА должны отвечать ряду дополнительных требований, связанных с работой, сроком службы самого ПРА и экономичностью применения ЛЛ. Прежде всего, это требование к ограничению потерь мощности в ПРА.
Потери мощности в ПРА формируют как отношение активной мощности, рассеиваемой в ПРА, к мощности лампы при номинальном напряжении сети. Значение потерь мощности ПРА определяется конструкцией, уровнем шума, массой магнитопровода, параметрами обмотки. Потери в дросселях обратно пропорциональны габаритным размерам, чем меньше размеры дросселя, тем выше потери в них. Так, ПРА к лампам мощностью 30 Вт имеет потери в пределах 23 31, мощностью 40 Вт 18 28, мощностью 65 Вт – 20 26 %, причем минимальные значения потерь относятся к индуктивным ПРА, а максимальные — к индуктивно-емкостным. Наличие, потерь в ПРА снижает общую световую отдачу ламп плюс комплекта ПРА, т. е. чем больше потери мощности в ПРА тем больше тратится электроэнергии на создание того же светового потока.
Элементы ПРА должны удовлетворять требованиям по электрической прочности и сопротивлению изоляции. Эти требования часто называют параметрами элсктробезопасности, так как они обеспечивают безопасность людей от поражения электрическим током и гарантируют отсутствие коротких замыканий в ПРА, т. е. обеспечивают также пожаробезопасности ПРА.
Важным требованием является требование к тепловому режиму. Тепловой режим ПРА определяется потерями мощности в обмотке и магнитопроводе, габаритными размерами и условиями охлаждения. Нормирование тепловых параметров связано с необходимостью обеспечить длительный срок службы ПРА (около 10 лет) без изменения ее электрических параметров. Тепловой режим ПРА нормируется двумя значениями - температурой нагрева обмотки и превышением температуры нагрева корпусов ПРА и конденсаторов.
Допустимую температуру нагрева обмотки tw устанавливают в зависимости от термостойкости изоляции обмоточного провода, но не менее чем на два класса ниже по температурной шкале. Значения tw выбирают из того же ряда температур, что и температуру классов термостойкости, т. е. 105, 120, 130°С и т. д. Таким образом, для проводов с допустимой температурой изоляции 130°С значение tw не должно превышать 105 °С. Конструкция ПРА должна обеспечивать превышение температуры обмотки в номинальном рабочем режиме не выше чем 55°С для встраиваемых аппаратов и 45°С для аппаратов независимого исполнения. Значения превышения температуры в аномальном, т. е. длительном, пусковом режиме не должны превышать значений, приведенных ниже.
Превышение температуры обмоток ПРА в рабочем режиме проверяется при номинальном напряжении сети, в аномальном - при 1,1 номинального напряжения сети.
Требование по ограничению содержания высших гармоник в токе лампы связано с возможностью перегрузки нулевого провода трехфазной питающей сети токами высших гармоник, кратных трем, которые появляются в токе лампы.
Пускорегулирующий аппарат при своей работе является источником акустических шумов. Основной причиной шума является вибрация пластин магнитопровода под действием электромагнитных сил, возникающих в магнитном поле, и магнитострикция, или изменение размеров ферромагнитного материала при наличии магнитного поля. Уровень шума ПРА нормируют по значению звуковой мощности, создаваемой при их включении на напряжение сети, равное 1,1 номинального, в определенных частотных полосах от 125 до 8000 Гц, что соответствует полосе частот, воспринимаемых ухом человека. Уровень шума измеряют в специальной реверберациониой камере, менее точные измерения в процессе производства ПРА производят в звукомерной камере при условии обеспечения определенного уровня внешних акустических помех.
Дата: 2019-12-22, просмотров: 274.