Противопожарные меро приятия
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

    Одним из важных требований при проектировании подстанции является принятие соответствующих мер по защите оборудования, кабелей и помещений от пожара и взрыва. В комплекс противопожарных мероприятий на подстанции входят: противопожарный водопровод, стационарные установки пожаротушения распыленной водой трансформаторов, реакторов и кабельных помещений, защита помещений ЭВМ газовым пожаротушением, отвод масла от трансформаторов при аварии, строительно-

Конструктивные мероприятия в зданиях и огнестойкие преграды между трансформаторами, пожарная сигнализация.

    По уровню оснащенности противопожарными мероприятиям подстанции разделены на три группы:

    Первая группа- подстанции 500 кВ с трансформаторами любой мощности, подстанции 220 и 330 кВ с трансформаторами 200 МВ*А и выше и закрытые подстанции 110 кВ и выше с трансформаторами 40 МВ*А и более;

    Вторая группа- подстанции 220 и 330 кВ с трансформаторам 40 МВ*А и более ( до 200 МВ*А), подстанции 110 и 154 кВ с трансформаторами 63 МВ*А и выше;

    Третья группа- подстанции 220 кВ с трансформаторами менее 40 МВ*А, подстанции 110 и 154 кВ с трансформаторами менее 63 МВ*А.

    Подстанции первой группы оборудуются противопожарным водопроводом высокого давления и необходимой емкостью для хранения противопожарного запаса воды. Силовые трансформаторы кабельные помещения оснащаются стационарными установками пожаротушения распыленной водой.

    Подстанции второй группы оборудуются водопроводом ( противопожарным) и при необходимости емкостями для хранения воды. Стационарная установка для защиты силовых трансформаторов и кабельных помещений предусматривается в зависимости от размещения и значения подстанции.

    На подстанциях третей группы противопожарный водопровод как правило не предусматривается. Исключение составляют подстанции 154 и 220 кВ, оснащенные синхронными компенсаторами.

 

    Противопожарный водопровод включает в себя наружные сети с гидрантами, пожарные краны в помещениях, резервуары ( при отсутствии другого надежного источника воды), насосную станцию.

    Стационарные установки пожаротушения трансформаторов, реакторов и кабельных помещений распыленной водой включает в себя систему сухих трубопроводов (сухотрубов) с дренчерным оросителями и узел с запорно-пусковыми устройствами (камеру задвижек), от которого расходятся лучи соответствующего направления. К камере задвижек от насосной станции и резервуаров подводятся водопроводы, заполненные водой. В зависимости от количества защищаемых объектов и расстояния между ними для уменьшения длины сухотрубов, могут быть сооружены одна, две и более камер задвижек, которые размещаются в доступных во время пожара местах.

     

 

 



СПЕЦИАЛЬНАЯ ГЛАВА

Методы определения характера и мест повреждений в кабельных линиях

Часто встречающиеся повреждения кабеля:

- заземление одной жилы (возникает при электрическом пробое изоляции или механическом повреждении изоляции кабеля, поврежденную жилу можно обнаружить по значительному уменьшению сопротивления изоляции по отношению к оболочке или земле);

- КЗ между жилами ( происходит при электрическом пробое изоляции, характеризуется малым сопротивлением изоляции между жилами);

-  Обрыв жилы ( чаще всего случается при механических повреждениях кабеля; обрывы жилы бывают без заземления, то есть чистый обрыв и с заземлением одной или двух половин. Для чистого обрыва характерно высокое сопротивление изоляции жилы по отношению к земле. Обрыв жилы с заземлением ее двух половин характерен сравнительно большим омическим сопротивлением оборванной жилы и низким сопротивлением изоляции этой жилы с обоих концов);

- комбинированные повреждения кабелей ( различные сочетания указанных видов повреждений).

Для определения характера повреждений кабеля измеряют сопротивление изоляции отдельных жил по отношению друг к другу и по отношению к земле. Состояние изоляции и целость жил кабеля проверяют мегомметром. Для наглядности результаты измерений заносят в таблицу и затем анализируют. При анализе результатов измерений следует иметь в виду, что сопротивление изоляции кабеля должно соответствовать данным ПТЭ и ПТБ.

Методы отыскания повреждения кабеля подразделяются на группы: относительные (для обнаружения зоны) и абсолютные ( для обнаружения места повреждения). 

При определении мест повреждения кабельных линий необходимо соблюдать серьезные требования: погрешность не должна превышать 3 м (при этом учитываются трудности производства земляных работ на городских проездах с усовершенствованным покрытием); выполнение ОМП должно ограничиваться несколькими часами; должны соблюдаться правила безопасности персонала. Указанные требования усиливаются необходимостью быстрейшего ремонта КЛ при ее повреждении, так как при выводе линии в ремонт нарушается надежность электроснабжения потребителей и возрастают потери электроэнергии в сети. Для кабельных линий, проложенных в земляной траншее, следует учитывать опасность проникновения влаги в изоляцию в результате нарушений герметичности, возникающих в месте повреждения. Проникновение влаги может быть весьма интенсивным и распространяться на значительную длину вдоль линии.
При быстром определении места повреждения ремонт линии ограничивается заменой участка кабеля длиной 35 м и монтажом двух соединительных муфт, в благоприятных случаях может быть установлена одна муфта. Если работы по определению места повреждения затягиваются, что ведет к проникновению влаги, то возникает необходимость замены участка кабеля с увлажненной изоляцией длиной уже в несколько десятков метров, Это, в свою очередь, увеличивает объем земляных работ и ведет к удорожанию ремонта линии.
В соответствии с установившейся практикой определяют место повреждения в два приема: сначала определяют зоны повреждения кабельной линии, затем уточняется место повреждения в пределах зоны. На первом этапе определение места повреждения производится с конца линии, на втором этапе непосредственно на трассе линии. В связи с этим методы соответственно разделяются на дистанционные (относительные) и топографические (абсолютные). При сложных повреждениях возможно сочетание различных методов определения мест повреждений.
К дистанционным методам относятся: импульсный, колебательного разряда и мостовой, а к топографическим : индукционный, акустический и метод накладной рамки.

Для точного определения места повреждения целесообразно сочетать оба метода: относительный и обсалютный.


При импульсном методе в КЛ посылается так называемый зондирующий электрический импульс и измеряется время между моментом посылки зондирующего импульса и моментом прихода импульса, отраженного от места повреждения. При этом учитывается, что скорость распространения электромагнитных колебаний в КЛ с бумажной изоляцией находится в пределах 160 м/мкс. Время сдвига между зондирующим и отраженным импульсами определяется при помощи электронно-лучевой трубки.
Для измерений используются известные приборы ИКЛ-4, ИКЛ-5, Р5-1А, Р5-5, более совершенные Р5-9, Р5-10. Прибор присоединяется к одному концу линии (схема присоединения выбирается в зависимости от характера повреждения). На экране электронно-лучевой трубки нанесена линия масштаба времени, цена деления которого устанавливается в зависимости от диапазона измерения. Для удобства отсчета на индикаторе экрана имеется сетка. На экране трубки виден отраженный импульс, вершина которого при обрыве жил направлена вверх, при замыкании жил вниз. Кроме того, отражается изменение волнового сопротивления линии за счет соединительных муфт, изменения сечения линии и т. д.
Импульсный метод может быть применен в КЛ любых конструкций при однофазных и многофазных повреждениях устойчивого характера (Rп<50/100 Ом), при обрывах жил (Rц> >106 Ом) и при сложных повреждениях.
    Метод колебательного разряда базируется на измерении периода (полупериода) собственных электрических колебаний, которые возникают в КЛ в момент ее пробоя, т. е. при разряде электрической дуги в месте повреждения. Для определения места повреждения по данному методу линию необходимо доводить до пробоя в момент измерений. Последнее предусматривается за счет подачи на линию повышенного напряжения (ниже испытательного). Метод предназначен для определения места повреждения кабельных линий при наличии «заплывающего» пробоя или в тех случаях, когда в месте повреждения отмечаются электрические разряды. «Заплывающий» пробой характеризуется следующими друг за другом пробоями с разными промежутками времени под воздействием повышенного напряжения. При снижении напряжения пробои прекращаются. В некоторых случаях поврежденная линия начинает выдерживать более высокое напряжение, вплоть до испытательного, т. е. изоляция линии временно восстанавливается. Это наблюдается преимущественно в муфтах.

Для измерения расстояния до места повреждения применяются приборы ЭМКС-58М и Ш-4120 с емкостным делителем напряжения, присоединяемые к линии с помощью испытательной установки. В процессе определения места повреждения напряжение установки поднимается до пробивного, в момент пробоя прибор производит измерение и самоблокируется. Шкала прибора проградуирована в относительных единицах. Отсчет расстояния до места повреждения производится по шкале с учетом причины отклонения стрелки и предела измерений. При определении места однофазного повреждения целые жилы КЛ должны быть изолированы. При повреждении между жилами напряжение испытательной установки подается на одну жилу, а две других заземляются через сопротивление более 1000 Ом.

Мостовой метод предусматривает использование измерительных мостов постоянного или переменного тока. Для измерения расстояния до места повреждения собирается мостовая схема из регулируемых резисторов измерительного моста и поврежденной здоровой жил, соединенных накоротко с противоположного конца линии. При определении места повреждения путем измерения R1 и R2 добиваются равновесия моста. В таком случае расстояние до места повреждения равно
lx = 2LR1/(R1+R2),

где L длина линии; R1 и R2, сопротивление резистора, присоединенного к поврежденной и неповрежденной жилам соответственно. Измерения производят с обоих концов кабельной линии.

Схема измерения выполняется с использованием специальных проводов и зажимов с целью исключения влияния сопротивления контактов на результаты. Если линия имеет вставки разных сечений, сопротивление линии приводится к одному эквивалентному. При применении мостового метода необходимо иметь одну неповрежденную жилу или жилу с переходным сопротивлением, не менее чем в 100 раз большим переходного сопротивления других жил. Значение переходного сопротивления поврежденной жилы не более 5000 Ом. Методом надежно определяются однофазные и многофазные повреждения устойчивого характера. При обрывах жил определение места повреждения производится путем измерения емкости линии при помощи моста переменного тока. Как правило, применяется универсальный кабельный мост Р-334, который допускает измерение на постоянном и переменном токе.
Индукционный метод относится к топографическим методам и основан на принципе прослушивания с поверхности земли звука, который создается электромагнитными колебаниями при прохождении по жилам КЛ тока звуковой частоты (800 1200 Гц). С этой целью генератор звуковой частоты присоединяется к двум жилам кабельной линии . Для прослушивания звука используются специальная приемная рамка с усилителем (кабелеискатель) и телефонные наушники. При движении оператора с кабелеискателем по трассе звук в наушниках будет периодически изменяться из-за наличия скрутки жил. Кроме того, звук будет усиливаться над соединительной муфтой, изменяться в зависимости от изменения глубины прокладки линии, наличия труб и т. п. Только над местом повреждения будет отмечаться резкое возрастание звука с последующим его затуханием на расстоянии 0,51,0 м от повреждения.
С помощью индукционного метода определяются двух- и трехфазные повреждения устойчивого характера при значении переходного сопротивления не более 2025 Ом. Генераторы звуковой частоты и кабелеискатели применяются различного схемного и конструктивного исполнения. С целью увеличения чувствительности метода и исключения индустриальных помех (соседние кабели, электрифицированный транспорт и т.п.) при их большой интенсивности увеличивают частоту генератора до 10 кГц, применяют кабелеискатели с высокоизбирательными антеннами и используют настроенность рамки. В этой связи может быть отмечен комплект аппаратуры ВНИИЭ, включающий генератор

ГК-77 на частоту 1 и 10 кГц, кабелеискатель КАИ-77, индукционный и акустический датчик повышенной чувствительности.
Индукционный метод широко используется для определения трассы кабеля и глубины его залегания в земляной траншее. С этой целью первый вывод генератора присоединяется к жиле, противоположный ее конец и второй вывод генератора заземляется. Ток генератора в зависимости от величины помех и глубины залегания кабеля устанавливается до 1520 А. При горизонтальном расположении приемной рамки кабелеискателя максимальный звук в наушниках будет соответствовать положению и над кабелем. При вертикальном расположении рамки звук кабелем будет исчезать, возрастая и затем медленно убывая, перемещении рамки в одну и другую сторону от кабеля. В результате указанного прослушивания звука над трассой устанавливается ее точное положение. Для определения глубины залегания кабеля в траншее приемную рамку кабелеискателя устанавливают под углом 45° к вертикальной плоскости, проходящей через кабель. Рамку отводят от линии расположения кабеля до того момента, когда пропадет звук в наушниках. Расстояние между линией трассы и положением рамки будет соответствовать, глубине прокладки кабеля. Метод используется также для определения положения соединительных муфт на трассе линии. В таком случае генератор включают по схеме двухпроводного питания, т. е. выводы генератора присоединяются к двум жилам линии, последние с другого конца соединяются накоротко. Над муфтами будет прослушиваться резкое усиление звука.

Метод накладной рамки является разновидностью индукционного метода. При этом вместо приемной рамки к кабелеискателю присоединяется так называемая накладная рамка, выполненная в виде металлической обоймы, внутри которой расположена измерительная катушка. Накладная рамка вращается оратором вокруг поврежденного кабеля при включенном генераторе звуковой частоты. Звук в наушниках до места повреждения будет дважды изменяться, достигая максимума и минимума, местом повреждения в наушниках будет прослушиваться монотонное звучание. Метод накладной рамки применяется на открыто сложенных КЛ, при замыкании одной жилы на оболочку (особенно для кабелей с жилами в самостоятельных металлических оболочках) и при повреждении изоляции двух или трех жил большим переходным сопротивлением. При применении метода для линий, проложенных в земле, производится вскрытие трассы помощью шурфов.

Акустический метод основан на прослушивании над местом повреждения звуковых колебаний, возникающих в месте повреждения по причине искрового разряда от электрических импульсов, посылаемых в кабельную линию. В качестве источника импульсов служит испытательная установка. Схема определения места повреждения зависит от вида повреждения КЛ . Если произошел «заплывающий» пробой, то источником импульсов служит испытательная установка, напряжение которой поднимается до пробоя в месте повреждения . При устойчивых замыканиях в месте повреждения для образования импульса используется испытательная установка, разрядник и накопительная (зарядная) емкость или емкость неповрежденных жил . В этом случае одновременно с разрядником происходит разряд в месте повреждения КЛ. В процессе определения места повреждения звук разряда периодически посылаемых импульсов прослушивается в месте повреждения оператором с помощью деревянного стетоскопа или кабедеискателя с пьезодатчиком, который преобразует механические колебания, возникающие в грунте при разряде импульса, в электрические. Максимальный звук соответствует месту повреждения. Метод используется при «заплывающих» пробоях, одно- и многофазных повреждениях устойчивого характера (но не металлических замыканий), при обрывах жил с заземлением в месте повреждения. Современные кабелеискатели КАИ-73, КАИ-77 являются акустико-индукционными и могут использоваться для акустического и индукционного методов измерения.
Дополнительно отметим, что определенные трудности, возникающие при дистанционном и топографическом методах определения места повреждения, возникают ввиду однофазных замыканий на землю. В частности, импульсный метод дает надежные результаты только при малом значении переходного сопротивления в месте повреждения. В противном случае метод считается непригодным. По этой причине в 1983 г. начинается промышленное изготовление нового прибора типа Р5-12, принцип работы которого базируется на импульсной локации во время горения дуги. В результате область использования импульсного метода значительно расширяется. В частности, с его помощью можно будет определять дефект кабельной линии при увлажненной изоляции и даже «заплывающий» пробой.
При однофазных повреждениях КЛ (при металлическом замыкании на землю) акустический метод непригоден. Индукционный метод в таких случаях также не всегда эффективен. Только применение накладной рамки с соответствующим шурфованием на трассе кабельной линии обеспечивает определение места повреждения с необходимой точностью.
Применение индукционного метода при наличии переходного сопротивления в месте однофазного повреждения вообще исключено, так как невозможно устранить электромагнитное поле помех, которое создается током звуковой частоты, стекающим с оболочки кабеля в землю. По указанным причинам средства поиска однофазных повреждений необходимо совершенствовать. Так, можно отметить индукционно-фазовый способ, который базируется на контроле фазового сдвига тока, протекающего по поврежденной жиле кабельной линии. С этой целью в целую и поврежденную жилы линии посылают токи кратной частоты, например 1 и 10 кГц, которые создаются генераторным комплексом. Контроль производится индукционным методом с помощью усовершенствованного приемно-передающего переносного устройства. Место повреждения определяется по изменению фазового угла тока на месте дефекта кабельной линии.
В связи с внедрением кабелей с пластмассовым покрытием определение места локального повреждения ведется топографическим методом. Для этого рекомендуется применять потенциальные методы, которые предусматривают измерение разности потенциалов на поверхности земли, создаваемой током растекания в месте повреждения. В основу одного из таких способов положено сравнение двух сигналов звуковой частоты, создаваемых током в оболочке кабеля и током растекания в земле. Генератор присоединяется к оболочке кабеля и к земле. Приемная аппаратура содержит индукционный .датчик, усилители обоих сигналов, потенциальные зонды и схему сравнения фазы сигналов и стрелочный индикатор. Место повреждения устанавливается на трассе линии по нулевому показанию индикатора.

1,5 % мостовым на постоянном токе и 1,5 % методом колебательного разряда. Примерно 3033 % повреждений определяются без применения дистанционных методов. Метод накладной рамки с предварительной шурфовкой применяется в единичных случаях.
В сетях ЛКС имеется около 100 кабельных линий напряжением 6110 кВ с подводными переходами, которые имеют протяженность 3011000 м. Методика определения мест повреждений на таких линиях также осуществляется в два этапа. Характерными видами повреждений КЛ на подводных участках являются обрыв трех жил и пробой изоляции жилы при испытаниях, а также различные повреждения линий в рабочем состоянии. При обрыве жил прожигание не требуется, а при пробое изоляции во время испытаний прожигание не вызывает особых трудностей. При повреждении линии, находящейся под рабочим напряжением, без обрыва жил возникают затруднения при попытке снизить переходное сопротивление в месте повреждения до 50 100 Ом. В таких случаях применяется для определения места повреждения петлевой метод на постоянном токе. В остальных случаях применяется импульсный метод.
При определении места повреждения на подводных участках применяется ремонтное кабельное судно с бригадой водолазов, имеющей герметизированный комплект акустического и индукционного датчиков. По результатам измерений дистанционным методом судно с водолазами устанавливается в зоне предполагаемого повреждения кабельной линии. Уточнение места повреждения производится, как правило, акустическим методом, при этом водолаз с датчиком передвигается по дну водоема по команде оператора, находящегося на судне, в зависимости от сигналов, поступающих с датчика в зоне повреждения линии. Электролаборатория в это время находится на подстанции и поддерживает заданный режим подачи электрических импульсов в линию.
Выполнение измерений на подводных участках связано со следующими трудностями: ремонтное судно не может быть установлено над подводной трассой КЛ без отклонения, которое на речных протоках доходит до 20 м, в море до 100 м; передвижение водолаза ограничено воздушным шлангом не более 25 м; в ряде случаев возникает необходимость размыва трассы гидромонитором, так как кабели на подводных переходах укладываются в углубленные траншеи: выход судна для измерений ремонта связан с погодными условиями. Поэтому определение ест повреждения на подводных участках может длиться от двух ней до одного месяца.

 

 



















Заключение

        

В рассмотренном дипломном проекте проделана большая работа по проектированию подстанции. В результате её были выполнены следующие мероприятия: построены графики нагрузок (суточные) в зимнее и летнее время. На основании этих графиков был построен годовой график по продолжительности нагрузок, исходя из данных которого были выбраны силовые трансформаторы на подстанции.

Далее был произведен расчет токов короткого замыкания, на основании которого были выбраны токоведущие части на всей подстанции, а а так же коммутационные аппараты (выключатели и разъединители) и измерительные трансформаторы тока и напряжения для подключения измерительных приборов. Так же был выбран трансформатор собственных ныжд исходя из мощности, потребляемой собственными нуждами подстанции.

В главе «Экономическая часть» был произведен расчет сетевого графика по сооружению подстанции, на основании которого был подсчитан наибольший срок сооружения подстанции (в месяцах), а так же время, отведенное на выполнение каждой работы. Далее в этой же главе произведен расчет эксплуатационных затрат на подстанции, в том числе заработная плата, отчисления на социальные нужды, амортизационные отчисления, отчисления в ремонтный фонд, стоимость материалов и прочие затраты.

В главе «Охрана труда» был произведен расчет заземляющего устроиства подстанции по допустимому сопротивлению заземляющего устройства и допустимому напряжению прикосновения. Далее в этой же главе были рассмотрены противопожарные мероприятия на подстанции.

В главе «Релейная защита» был произведен расчет дифференциальной токовой защиты трансформаторов, выполненной с реле серии РНТ-565.

В главе «Спец.вопрос» были рассмотрены методы определения характера и мест повреждения кабельных линий.

 

Список использованной литературы:

1. Рожкова Л.Д., Козулин В.С. «Электрооборудование станций и подстанций». Учебник для техникумов –3 издание переработанное и дополненное. Москва. «Энергоатомиздат»1987 г.648 с.

2. Неклепаев Б.Н., Крючков И.П. « Электрическая часть станций и подстанций» – 4 издание переработанное и дополненное. Москва. «Энергоатомиздат». 1989 г. 608 с.

3. Долин П.А. «Основы техники безопасности в электроустановках». Москва. «Энергия» 1979 г. 408 с.

4.  « Правила устройства электроустановок» 7- издание переботанное и дополненное. Москва. « Энергоатомиздат».1991 г.648 с.

5. Рябкова Е.Я. « Расчет заземляющих устройств». Москва. «МЭИ» 1973 г.

6. «Справочник по проектированию подстанции 35-500 кВ» под редакцией С.С. Рокотяна и Я.Э. Самойлова . Москва. «Энергоатомиздат» 1982 г.352с.

7. « Правила технической эксплуатации электрических станций и сетей» – 14 издание переработанное и дополнненое. Москва. «Энергоатомиздат».1989 г.

8. Старовойтов Н.Г., Старовойтов В.Н. « Понижающие подстанции для электроснабжения промышленных и комунально-бытовых потребителей». Владивосток. ДВГТУ.1998 г. 44 с.

9. Лю Г.П., Суркина И.В., Янькова Л.И. « Проектирование электрической части подстанций». Методические указания к курсовому проектированию. Владивосток. ДВГТУ. 2002 г.48с.

 

Дата: 2019-12-10, просмотров: 283.