Сглаживающие транзисторные фильтры
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

     Для сглаживания пульсаций выпрямленного напряжения в несколько единиц или десятков вольт широко применяются фильтры с транзисторами. Одна из схем такого фильтра показана на рисунке рисунок .9

    Для пояснения принципа работы этой схемы напомним, что если напряжение базы транзистора (в данном случае на резисторе R2) увеличивается по отношению к напряжению эмиттера, то ток, протекающий через транзистор, уменьшается. Уменьшение тока равносильно увеличению сопротивления транзистора. Если на вход фильтра поступает постоянное напряжение, то напряжение между эмиттером и базой также будет постоянным, и, значит, постоянным будет напряжение на выходе фильтра. При наличии пульсаций в выпрямленном напряжении (на зажимах 1—1) на резисторе R1 создается также пульсирующее напряжение. При увеличении напряжения на входе фильтра повышается и напряжение на резисторе R1. Это приращение напряжения через конденсатор С2 подается на базу. Напряжение базы возрастает, что приводит к увеличению сопротивления транзистора. Возрастание сопротивления транзистора вызывает уменьшение изменения тока в цепи. И наоборот, при уменьшении напряжения на входе фильтра снижается и напряжение на резисторе R1. Это уменьшение напряжения передается на базу транзистора и снижает его сопротивление. Таким образом, данная схема как бы следит за всеми быстрыми изменениями напряжения на ее входе и регулирует сопротивление транзистора проходящему через него току так, что выходное напряжение фильтра изменяется значительно меньше, чем напряжение на его входе.

     Недостатком данной схемы является то, что часть напряжения бесполезно тратится на резисторе R1, вследствие чего напряжение на выходе фильтра оказывается меньшим, чем на входе. Поэтому чаще применяют другую схему транзисторного фильтра. Сглаживание пульсаций в ней происходит за счет различий в сопротивлениях транзистора для постоянного и переменного (пульсирующего) токов: сопротивление транзистора переменному току в тысячу и даже десятки тысяч раз больше, чем постоянному току. Вследствие этого постоянная составляющая напряжения передается через такой фильтр почти без ослабления, в то время как переменная составляющая (пульсации) чуть ли не вся выделяется на транзисторе и на выход фильтра едва поступает.

Выбор конденсаторов для сглаживающих фильтров

Как уже отмечалось, чем больше емкость конденсатора, тем он лучше сглаживает пульсации выпрямленного напряжения, поэтому в фильтрах применяют электролитические конденсаторы, обладающие при малых габаритах и весе большой емкостью. Емкость конденсатора фильтра может составлять десятки, сотни и даже тысячи микрофарад (мкФ). Чем больший ток потребляет нагрузка, тем большую емкость должны иметь конденсаторы фильтра. Для получения значительной емкости вместо одного конденсатора можно применять несколько параллельно включенных.

Другим важным параметром, по которому выбираются конденсаторы фильтра, является его рабочее напряжение, которое не должно быть меньше, чем выпрямленное напряжение. Если, например, выпрямленное напряжение составляет 30 В, а для его фильтрации используется электролитический конденсатор с рабочим напряжением 25 В, может произойти пробой конденсатора, в результате чего, его сопротивление упадет почти до нуля и последует короткое замыкание выходной цепи выпрямителя, которое вызовет резкое увеличение тока, протекающего через диоды и вторичную обмотку трансформатора.

При увеличении тока возможны выход из строя выпрямительных диодов или перегорание вторичной (или даже первичной) обмотки трансформатора.

 



Заключение

Дано определение коэффициента сглаживания, подходящее для любого сглаживающего фильтра.

Получены расчетные формулы комплексных коэффициентов сглаживания простых и составных пассивных фильтров.

Индуктивный фильтр эффективен для низкоомной нагрузки, емкостный – для высокоомной.

Список используемой литературы

1.  Алексеев О.В., Китаев В.Е., Шихин А.Я. Электрические устройства/Под ред. А.Я.Шихина: Учебник. – М.: Энергоиздат, 200– 336 с.

1. Интернет  – www.google.ru

 

.

 

Дата: 2019-12-10, просмотров: 267.