Программное обеспечение компьютеров
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Под программным обеспечением (Software) понимается совокупность программ, выполняемых вычислительной системой.

К программному обеспечению (ПО) относится также вся область деятельности по проектированию и разработке ПО:

· технология проектирования программ (например, нисходящее проектирование, структурное и объектно-ориентированное проектирование и др.);

· методы тестирования программ;

· методы доказательства правильности программ;

· анализ качества работы программ;

· документирование программ;

· разработка и использование программных средств, облегчающих процесс проектирования программного обеспечения, и многое другое.

Программное обеспечение – неотъемлемая часть компьютерной системы. Оно является логическим продолжением технических средств. Сфера применения конкретного компьютера определяется созданным для него ПО.

Сам по себе компьютер не обладает знаниями ни в одной области применения. Все эти знания сосредоточены в выполняемых на компьютерах программах.

В первом приближении все программы, работающие на компьютере, можно условно разделить на четыре уровня:

1. базовый уровень;

2. системный уровень;

3. служебный уровень;

4. прикладной уровень.

Базовая система ввода/вывода (BIOS) выполняет наиболее простые и универсальные услуги операционной системы, связанные с осуществлением ввода-вывода. В функции BIOS входит также автоматическое тестирование основных аппаратных компонентов (оперативной памяти и др.) при включении машины и вызов блока начальной загрузки DOS.

Блок начальной загрузки (или просто загрузчик) — это очень короткая программа, единственная функция которой заключается в считывании с диска в оперативную память двух других частей DOS — модуля расширения базовой системы ввода/вывода и модуля обработки прерываний.

Модуль расширения базовой системы ввода/вывода дает возможность использования дополнительных драйверов, обслуживающих новые внешние устройства, а также драйверов для нестандартного обслуживания внешних устройств.

Модуль обработки прерываний реализует основные высокоуровневые услуги DOS, поэтому его и называют основным.

Командный процессор DOS обрабатывает команды, вводимые пользователем.

Системные программы служат для управления ресурсами компьютера — центральным процессором, памятью, вводом-выводом.

Это программы общего пользования, которые предназначены для всех пользователей компьютера. Системное программное обеспечение разрабатывается так, чтобы компьютер мог эффективно выполнять прикладные программы.

Среди десятков тысяч системных программ особое место занимают операционные системы, которые обеспечивают взаимодействие с пользователем и управление ресурсами компьютера с целью их эффективного использования.

Программы-драйверы расширяют возможности операционной системы по управлению устройствами ввода-вывода, оперативной памятью и т.д.; с помощью драйверов возможно подключение к компьютеру новых устройств или нестандартное использование имеющихся;

Служебные программы утилиты (лат. utilitas — польза) являются также важными классами программ. Они либо расширяют и дополняют соответствующие возможности операционной системы, либо решают самостоятельные важные задачи. Кратко опишем некоторые разновидности утилит:

· программы контроля, тестирования и диагностики, которые используются для проверки правильности функционирования устройств компьютера и для обнаружения неисправностей в процессе эксплуатации; указывают причину и место неисправности;

· программы-упаковщики (архиваторы), которые позволяют записывать информацию на дисках более плотно, а также объединять копии нескольких файлов в один архивный файл;

· антивирусные программы, предназначенные для предотвращения заражения компьютерными вирусами и ликвидации последствий заражения вирусами;

· программы оптимизации и контроля качества дискового пространства ;

· программы восстановления информации, форматирования, защиты данных ;

· коммуникационные программы, организующие обмен информацией между компьютерами;

· программы для управления памятью, обеспечивающие более гибкое использование оперативной памяти;

· программы для записи DVD, CD-R и многие другие.

Часть утилит входит в состав операционной системы, а другая часть функционирует независимо от нее, т.е. автономно.

Прикладная программа — это любая конкретная программа, способствующая решению какой-либо задачи в пределах данной проблемной области.

Например, там, где на компьютер возложена задача контроля за финансовой деятельностью какой-либо фирмы, прикладной будет программа подготовки платежных ведомостей.

Прикладные программы могут носить и общий характер, например, обеспечивать составление и печатание документов и т.п.

Классификация прикладного ПО самостоятельно.

Назначение и функции операционных систем

Операционные системы относятся к системному программному обеспечению. К системному программному обеспечению принято относить такие программы и комплексы программ, которые являются общими, без которых невозможно выполнение или создание других программ. История появления и развития системного программного обеспечения началась с того момента, когда люди осознали, что любая программа требует операций ввода-вывода данных. Это произошло в далекие 50-е годы прошлого столетия. Собственно операционные системы появились чуть позже.

Действительно, если мы не будем иметь возможности изменять исходные данные и получать результаты вычислений, то зачем вообще эти вычисления? Очевидно, что исходные данные могут вводиться различными способами. На практике используются самые разнообразные устройства и методы. Например, мы можем вводить исходные значения с клавиатуры, задавать нужные действия или функции с помощью указателя мыши, считывать записи из файла, снимать оцифрованные значения с датчиков и т. д. Часть исходных данных может быть передана в программу через область памяти, в которую предварительно другая программа занесла свои результаты вычислений. Способов много. Главное — выполнить в программе некоторые действия, связанные с получением исходных данных.

Аналогично, и вывод результатов может быть организован, например, на соответствующие устройства и в форме, удобной для восприятия ее человеком. Либо результаты расчетов будут отправляться программой на какие-нибудь исполнительные устройства, которые управляются компьютером. Наконец, мы можем организовать запись полученных значений на некие устройства хранения данных (с целью их дальнейшей обработки).

Программирование операций ввода-вывода относится к одной из самых трудоемких областей создания программного обеспечения. Здесь речь идет не об использовании операторов типа READ или WRITE в языках высокого уровня. Речь идет о необходимости создать подпрограмму в машинном виде, уже готовую к выполнению на компьютере, а не написанную с помощью некоторой системы программирования (систем программирования тогда еще не было), подпрограмму, вместо обычных вычислений управляющую тем устройством, которое должно участвовать в операциях ввода исходных данных или вывода результатов. При наличии такой подпрограммы программист может обращаться к ней столько раз, сколько операций ввода-вывода с этим устройством ему требуется. Для выполнения этой работы программисту недостаточно хорошо знать архитектуру вычислительного комплекса и уметь создавать программы на языке ассемблера. Он должен отлично знать и интерфейс, с помощью которого устройство подключено к центральной части компьютера, и алгоритм функционирования устройства управления и устройства ввода-вывода.

Очевидно, что имело смысл создать набор подпрограмм управления операциями ввода-вывода и использовать его в своих программах, чтобы не заставлять программистов каждый раз заново программировать все эти операции. С этого и началась история системного программного обеспечения. Впоследствии набор подпрограмм ввода-вывода стали организовывать в виде специальной библиотеки ввода-вывода, а затем появились и сами операционные системы. Основной причиной их появления было желание автоматизировать процесс подготовки вычислительного комплекса к выполнению программы.

В 50-е годы взаимодействие пользователей с вычислительным комплексом было совершенно иным, чем нынче. Программист-кодер (от англ. coder — кодировщик) — специально подготовленный специалист, знающий архитектуру компьютера и язык(и) программирования, — по заказу составлял текст программы, часто по уже готовому алгоритму, разработанному программистом-алгоритмистом. Текст этой программы затем отдавался оператору, который набирал его на специальных устройствах и переносил на соответствующие носители. Чаще всего в качестве носителей использовались перфокарты или перфолента. Далее колода с перфокартами (перфолента) передавалась в вычислительный зал, где для вычислений по этой программе требовалось выполнить следующие действия.

1. Оператор вычислительного комплекса с пульта вводил в рабочие регистры центрального процессора и в оперативную память компьютера ту первоначальную программу, которая позволяла считать в память программу для трансляции исходных кодов и получения машинной (двоичной) программы (проще говоря, транслятор, который тоже хранился на перфокартах или перфоленте).

2. Транслятор считывал исходную программу, осуществлял лексический разбор исходного текста, и промежуточные результаты процесса трансляции зачастую так же выводили на перфокарты (перфоленту). Трансляция — сложный процесс, часто требующий нескольких проходов. Порой для выполнения очередного прохода приходилось в память компьютера загружать с перфокарт и следующую часть транслятора, и промежуточные результаты трансляции. Ведь результат трансляции выводился также на носители информации, поскольку объем оперативной памяти был небольшим, а задача трансляции — это очень сложная задача.

3. Оператор загружал в оперативную память компьютера полученные двоичные коды оттранслированной программы и подгружал двоичные коды тех системных подпрограмм, которые реализовывали управление операциями ввода-вывода. После этого готовая программа, расположенная в памяти, могла сама считывать исходные данные и осуществлять необходимые вычисления.

В случае обнаружения ошибок на одном из этих этапов или после анализа полученных результатов весь цикл необходимо было повторить.

Для автоматизации труда программиста (кодера) стали разрабатывать специальные алгоритмические языки высокого уровня, а для автоматизации труда оператора вычислительного комплекса была разработана специальная управляющая программа, загрузив которую в память один раз оператор мог ее далее использовать неоднократно и более не обращаться к процедуре программирования ЭВМ через пульт оператора. Именно эту управляющую программу и стали называть операционной системой. Со временем на нее стали возлагать все больше и больше задач, она стала расти в объеме. Прежде всего разработчики стремились к тому, чтобы операционная система как можно более эффективно распределяла вычислительные ресурсы компьютера, ведь в 60-е годы операционные системы уже позволяли организовать параллельное выполнение нескольких программ. Помимо задач распределения ресурсов появились задачи обеспечения надежности вычислений. К началу 70-х годов диалоговый режим работы с компьютером стал преобладающим, и у операционных систем стремительно начали развиваться интерфейсные возможности. Напомним, что термином интерфейс (interface) обозначают целый комплекс спецификаций, определяющих конкретный способ взаимодействия пользователя с компьютером.

На сегодняшний день можно констатировать, что операционная система (ОС) представляет собой комплекс системных управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между аппаратурой компьютера и пользователем с его задачами, а с другой стороны, предназначены для наиболее эффективного расходования ресурсов вычислительной системы и организации надежных вычислений.

Можно попробовать перечислить основные функции операционных систем.

1. Прием от пользователя (или от оператора системы) заданий, или команд, сформулированных на соответствующем языке, и их обработка. Задания могут передаваться в виде текстовых директив (команд) оператора или в форме указаний, выполняемых с помощью манипулятора (например, с помощью мыши). Эти команды связаны, прежде всего, с запуском (приостановкой, остановкой) программ, с операциями над файлами (получить перечень файлов в текущем каталоге, создать, переименовать, скопировать, переместить тот или иной файл и др.), хотя имеются и иные команды.

2. Загрузка в оперативную память подлежащих исполнению программ.

3. Распределение памяти, а в большинстве современных систем и организация виртуальной памяти.

4. Запуск программы (передача ей управления, в результате чего процессор исполняет программу).

5. Идентификация всех программ и данных.

6. Прием и исполнение различных запросов от выполняющихся приложений. Операционная система умеет выполнять очень большое количество системных функций (сервисов), которые могут быть запрошены из выполняющейся программы. Обращение к этим сервисам осуществляется по соответствующим правилам, которые и определяют интерфейс прикладного программирования (Application Program Interface, API) этой операционной системы.

7. Обслуживание всех операций ввода-вывода.

8. Обеспечение работы систем управлений файлами (СУФ) и/или систем управления базами данных (СУБД), что позволяет резко увеличить эффективность всего программного обеспечения.

9. Обеспечение режима мультипрограммирования, то есть организация параллельного выполнения двух или более программ на одном процессоре, создающая видимость их одновременного исполнения.

10. Планирование и диспетчеризация задач в соответствии с заданными стратегией и дисциплинами обслуживания.

11. Организация механизмов обмена сообщениями и данными между выполняющимися программами.

12. Для сетевых операционных систем характерной является функция обеспечения взаимодействия связанных между собой компьютеров.

13. Защита одной программы от влияния другой, обеспечение сохранности данных, защита самой операционной системы от исполняющихся на компьютере приложений.

14. Аутентификация и авторизация пользователей (для большинства диалоговых операционных систем). Под аутентификацией понимается процедура проверки имени пользователя и его пароля на соответствие тем значениям, которые хранятся в его учетной записи. Очевидно, что если входное имя (login) пользователя и его пароль совпадают, то, скорее всего, это и будет тот самый пользователь. Термин авторизация означает, что в соответствии с учетной записью пользователя, который прошел аутентификацию, ему (и всем запросам, которые будут идти к операционной системе от его имени) назначаются определенные права (привилегии), определяющие, что он может, а что не может делать на компьютере.

15. Удовлетворение жестким ограничениям на время ответа в режиме реального времени (характерно для операционных систем реального времени).

16. Обеспечение работы систем программирования, с помощью которых пользователи готовят свои программы.

17. Предоставление услуг на случай частичного сбоя системы.

18. Операционная система изолирует аппаратное обеспечение компьютера от прикладных программ пользователей. И пользователь, и его программы взаимодействуют с компьютером через интерфейсы операционной системы.

Понятие операционной среды

операционная система выполняет функции управления вычислениями в компьютере, распределяет ресурсы вычислительной системы между различными вычислительными процессами и образует ту программную среду, в которой выполняются прикладные программы пользователей. Такая среда называется операционной. Это значит, что при запуске программы она будет обращаться к операционной системе с соответствующими запросами на выполнение определенных действий, или функций. Эти функции операционная система выполняет, запуская специальные системные программные модули, входящие в ее состав.

при создании двоичных машинных программ прикладные программисты могут вообще не знать многих деталей управления конкретными ресурсами вычислительной системы, а должны только обращаться к некоторой программной подсистеме с соответствующими вызовами и получать от нее необходимые функции и сервисы. Эта программная подсистема и есть операционная система, а набор ее функций и сервисов, а также правила обращения к ним как раз и образуют то базовое понятие, которое мы называем операционной средой. Таким образом, можно сказать, что термин «операционная среда» означает, прежде всего, соответствующие интерфейсы, необходимые программам и пользователям для обращения к управляющей (супервизорной) части операционной системы с целью получить определенные сервисы.

программа, созданная для работы в некоторой операционной системе, скорее всего не будет работать в другой операционной системе, поскольку API у этих операционных систем, как правило, различаются. Стараясь преодолеть это ограничение, разработчики операционных систем стали создавать так называемые программные среды. Программную (системную) среду следует понимать как некоторое системное программное окружение, позволяющее выполнить все системные запросы от прикладной программы. Та системная программная среда, которая непосредственно образуется кодом операционной системы, называется основной, естественной, или нативной (native). Помимо основной операционной среды в операционной системе могут быть организованы (путем эмуляции иной операционной среды) дополнительные программные среды. Если в операционной системе организована работа с различными операционными средами, то в такой системе можно выполнять программы, созданные не только для данной, но и для других операционных систем.

параллельное существование терминов «операционная система» и «операционная среда» вызвано тем, что операционная система (в общем случае) может поддерживать несколько операционных сред.

операционная среда — это то системное программное окружение, в котором могут выполняться программы, созданные по правилам работы этой среды.

Классификация операционных систем

основным предназначением ОС является организация эффективных и надежных вычислений, создание различных интерфейсов для взаимодействия с этими вычислениями и с самой вычислительной системой.

Широко известно высказывание, согласно которому любая наука начинается с классификации. вариантов классификации может быть очень много, здесь все будет зависеть от выбранного признака, по которому один объект мы будем отличать от другого. Для ОС сформировалось относительно небольшое количество классификаций: по назначению, по режиму обработки задач, по способу взаимодействия с системой и, наконец, по способам построения (архитектурным особенностям системы).

Прежде всего, традиционно различают ОС общего и специального назначения. ОС специального назначения, в свою очередь, подразделяются на ОС для носимых микрокомпьютеров и различных встроенных систем, организации и ведения баз данных, решения задач реального времени и т. п.

По режиму обработки задач различают ОС, обеспечивающие однопрограммный и мультипрограммный (мультизадачный) режимы. К однопрограммным ОС относится, например, всем известная, хотя нынче уже практически и не используемая MS DOS. под мультипрограммированием понимается способ организации вычислений, когда на однопроцессорной вычислительной системе создается видимость одновременного выполнения нескольких программ. Любая задержка в решении программы (например, для осуществления операций ввода-вывода данных) используется для выполнения других (таких же либо менее важных) программ. Иногда при этом говорят о мультизадачном режиме, причем термины «мультипрограммный режим» и «мультизадачный режим» — это не синонимы, хотя и близкие понятия. Основное принципиальное отличие этих терминов заключается в том, что мультипрограммный режим обеспечивает параллельное выполнение нескольких приложений, и при этом программисты, создающие эти программы, не должны заботиться о механизмах организации их параллельной работы (эти функции берет на себя сама ОС; именно она распределяет между выполняющимися приложениями ресурсы вычислительной системы, осуществляет необходимую синхронизацию вычислений и взаимодействие). Мультизадачный режим, наоборот, предполагает, что забота о параллельном выполнении и взаимодействии приложений ложится как раз на прикладных программистов. современные ОС для персональных компьютеров реализуют и мультипрограммный, и мультизадачный режимы, поэтому об этом различии часто забывают

Если принимать во внимание способ взаимодействия с компьютером, то можно говорить о диалоговых системах и системах пакетной обработки. При организации работы с вычислительной системой в диалоговом режиме можно говорить об однопользовательских (однотерминальных) и мультитерминальных ОС. В мультитерминальных ОС с одной вычислительной системой одновременно могут работать несколько пользователей, каждый со своего терминала. При этом у пользователей возникает иллюзия, что у каждого из них имеется собственная вычислительная система. Очевидно, что для организации мультитерминального доступа к вычислительной системе необходимо обеспечить мультипрограммный режим работы. Количество параллельно работающих виртуальных машин определяется имеющимися ресурсами.

Основной особенностью операционных систем реального времени (ОСРВ) является обеспечение обработки поступающих заданий в течение заданных интервалов времени, которые нельзя превышать. Поток заданий в общем случае не является планомерным и не может регулироваться оператором (характер следования событий можно предсказать лишь в редких случаях), то есть задания поступают в непредсказуемые моменты времени и без всякой очередности. В то время как в ОС, не предназначенных для решения задач реального времени, имеются некоторые накладные расходы процессорного времени на этапе инициирования задач (в ходе которого ОС распознает все пожелания пользователей относительно решения своих задач, загружает в оперативную память нужную программу и выделяет другие необходимые для ее выполнения ресурсы), в ОСРВ подобные затраты могут отсутствовать, так как набор задач обычно фиксирован, и вся информация о задачах известна еще до поступления запросов. Для подлинной реализации режима реального времени необходима (хотя этого и недостаточно) организация мультипрограммирования. Мультипрограммирование является основным средством повышения производительности вычислительной системы, а для решения задач реального времени производительность становится важнейшим фактором. Лучшие характеристики по производительности для систем реального времени обеспечиваются однотерминальными ОСРВ. Средства организации мультитерминального режима всегда замедляют работу системы в целом, но расширяют функциональные возможности системы. Одной из наиболее известных ОСРВ для персональных компьютеров является ОС QNX.

По основному архитектурному принципу операционные системы разделяются на микроядерные и макроядерные (монолитные). В некоторой степени это разделение тоже условно, однако можно в качестве яркого примера микроядерной ОС привести ОСРВ QNX, тогда как в качестве монолитной можно назвать Windows 95/98 и т.д. или ОС Linux. Если ядро ОС Windows мы не можем изменить, нам недоступны его исходные коды и у нас нет программы для сборки (компиляции) этого ядра, то в случае с Linux мы можем сами собрать то ядро, которое нам необходимо, включив в него те программные модули и драйверы, которые мы считаем целесообразным включить именно в ядро (ведь к ним можно обращаться и из ядра).

По характеру интерфейса пользователя различают ОС неграфические и графические. Неграфические ОС реализуют интерфейс командной строки, когда система ждет ввод команды в поле командной строки и выполняет ее после утверждения (например, нажатием на клавишу Enter). Графические ОС реализуют более сложный тип интерфейса, в котором в качестве органа управления кроме клавиатуры может использоваться мышь. Работа с графической ОС основана на взаимодействии активных и пассивных экранных элементов управления. В качестве активного элемента выступает указатель мыши. В качестве пассивных элементов выступают графические элементы управления приложений (экранные кнопки, значки, переключатели, флажки. раскрывающиеся списки и т. д.).

Организация внешней памяти на магнитных дисках

Для организации внешней памяти желательно использовать относительно недорогие, но достаточно быстродействующие и емкие устройства с прямым доступом к данным. К таким устройствам, прежде всего, относятся накопители на жестких магнитных дисках (НЖМД).

поскольку большинство компьютеров имеет накопители на жестких магнитных дисках и фактически ни одна современная операционная система для повсеместно распространенных персональных компьютеров не обходится без дисковой подсистемы, мы ознакомимся с логической организацией хранения и доступа к данным в этих устройствах, причем применительно к персональным компьютерам. Действительно, дисковая подсистема для большинства компьютеров является одной из важнейших. Именно на магнитных дисках чаще всего располагается загружаемая в компьютер операционная система, которая и обеспечивает нам удобный интерфейс для работы. помимо файлов самой операционной системы, на дисках располагаются многочисленные прикладные программы и разнообразные файлы пользователей.

Основные понятия

За счет того, что при вращении диска магнитная головка, зафиксированная на некоторое время в определенном положении, образует окружность (дорожку — track), блоки данных на таких окружностях называют секторами (sectors). С некоторых пор размер сектора стал стандартным и в абсолютном большинстве случаев он равен 512 байт хранимых данных. Все сектора пронумерованы, и помимо данных пользователя на магнитных дисках размещается и служебная информация, с помощью которой можно находить искомый сектор. Служебная информация, как правило, располагается в межсекторных промежутках. Группы дорожек (треков) одного радиуса, расположенные на поверхностях магнитных дисков, образуют так называемые цилиндры (cylinders). Современные жесткие диски могут иметь по нескольку десятков тысяч цилиндров. Выбор конкретной дорожки в цилиндре осуществляется указанием порядкового номера той головки (head) чтения/записи данных, которая и образует эту дорожку. Таким образом, адрес конкретного блока данных указывается с помощью уже упоминавшихся трех координат C-H-S — номеров цилиндра, головки и сектора. Устройство управления НЖМД обеспечивает позиционирование блока головок на нужный цилиндр, выбирает заданную поверхность и находит требуемый сектор. Второй способ адресации блоков данных основывается на том, что все блоки (секторы) пронумерованы.

Логическая структура магнитного диска

Для того чтобы можно было загрузить с магнитного диска операционную систему, а уже с ее помощью организовать работу с файлами, были приняты специальные системные соглашения о структуре диска. Хранение данных на магнитном диске можно организовать различными способами. Можно поделить все дисковое пространство на несколько частей — разделов (partitions), а можно его и не делить. Деление НЖМД на разделы позволяет организовать на одном физическом устройстве несколько логических; в этом случае говорят о логических дисках.

Следует, однако, заметить, что не во всех операционных системах используется понятие логического диска. Так, UNIX-системы не имеют логических дисков.

Разделение всего дискового пространства на разделы полезно по нескольким соображениям. Во-первых, это структурирует хранение данных. Например, выделение отдельного раздела под операционную систему и программное обеспечение и другого раздела под данные пользователей позволяет отделить последние от системных файлов и не только повысить надежность системы, но и сделать более удобным ее обслуживание. Во-вторых, на каждом разделе может быть организована своя файловая система, что иногда бывает необходимо. Например, при установке операционной системы Linux нужно иметь не менее двух разделов, поскольку файл подкачки (страничный файл) должен располагаться в отдельном разделе. Наконец, в ряде случаев на компьютере может потребоваться установка более одной операционной системы.

Для того чтобы системное программное обеспечение получило информацию о том, как организовано хранение данных на каждом конкретном накопителе, нужно разместить в одном из секторов соответствующие данные. Даже если НЖМД используется как единственный логический диск, все равно нужно указать, что имеется всего один диск, и его размер. Структура данных, несущая информацию о логической организации диска, вместе с небольшой программой, с помощью которой можно ее проанализировать, а также найти и загрузить в оперативную память программу загрузки операционной системы, получила название главной загрузочной записи (Master Boot Record, MBR). MBR располагается в самом первом секторе НЖМД, то есть в секторе с координатами 0-0-1. Программа, расположенная в MBR, носит название внесистемного загрузчика (Non-System Bootstrap, NSB). Вследствие того, что сектор состоит только из 512 байт и помимо программы в нем должна располагаться информация об организации диска, внесистемный загрузчик очень прост, а структура данных, называемая таблицей разделов (Partition Table, РТ), занимает всего 64 байт. Каждый элемент этой таблицы описывает один раздел, причем двумя способами: через координаты C-H-S начального и конечного секторов, а также через номер первого сектора в спецификации LBA (Logical Block Addressing) и общее число секторов в разделе.

Можно сказать, что таблица разделов — одна из наиболее важных структур данных на жестком диске. Если эта таблица повреждена, то не только не будет загружаться ни одна из установленных на компьютере операционных систем, но станут недоступными данные, расположенные в НЖМД, особенно если жесткий диск был разбит на несколько разделов.

Разделы диска могут быть двух типов: первичные (primary) и расширенные (extended). Если первичных разделов несколько, то только один из них может быть активным. Именно загрузчику, расположенному в активном разделе, передается управление при включении компьютера с помощью внесистемного загрузчика.

Согласно принятым спецификациям на одном жестком диске может быть только один расширенный раздел, который, в свою очередь, может быть разделен на большое количество подразделов — логических дисков (logical disks). Расширенный раздел содержит вторичную запись MBR (Secondary MBR, SMBR), в состав которой вместо таблицы разделов входит аналогичная ей таблица логических дисков (Logical Disks Table, LDT).

Вслед за сектором MBR размещаются собственно сами разделы. В процессе начальной загрузки сектора MBR, содержащего таблицу разделов, работают программные модули BIOS. Начальная загрузка считается выполненной корректно только в том случае, если таблица разделов содержит допустимую информацию. Процедура начальной загрузки (bootstrap loader) определяет первое готовое устройство из списка разрешенных и доступных и пытается загрузить с него в оперативную память короткую главную программу - загрузчик. Для накопителей на жестких магнитных дисках — это уже известный нам главный, или внесистемный, загрузчик (NSB) из MBR, и ему передается управление. Главный загрузчик определяет на диске активный раздел, загружает его собственный системный загрузчик и передает управление ему. И, наконец, этот загрузчик находит и загружает необходимые файлы операционной системы и передает ей управление. Далее операционная система выполняет инициализацию подведомственных ей программных и аппаратных средств. Она добавляет новые сервисы, вызываемые, как правило, тоже через механизм программных прерываний, и расширяет (или заменяет) некоторые сервисы BIOS.

Согласно рассмотренному процессу, каждый раз при запуске компьютера будет загружаться одна и та же операционная система. Это не всегда нас может устраивать. Так называемые менеджеры загрузки (boot managers) предназначены для того, чтобы пользователь мог выбрать среди нескольких установленных на компьютере операционных систем желаемую и передать управление на загрузчик выбранной ОС. Имеется большое количество таких менеджеров. Одним из наиболее мощных менеджеров загрузки является OS Selector от фирмы Acronis. Эта программа имеет следующие основные особенности:

1. поддержка большого количества операционных систем, включая различные версии DOS (MS DOS, DR-DOS и др.), Windows (9х/МЕ, NT/2000/XP), OS/2, Linux, FreeBSD, SCO Unix, BeOS и др.;

2. возможность установки на любой раздел FAT16/FAT32, в том числе и на отдельный раздел, недоступный другим операционным системам;

3. возможность с помощью меню загрузки, предоставляемого менеджером, осуществить загрузку с дискеты;

4. автоматическая идентификация операционных систем как на первичных разделах, так и на логических дисках расширенного раздела всех НЖМД, доступных через BIOS компьютера;

5. поддержка нескольких операционных систем на одном разделе FAT16/FAT32, при этом предотвращаются конфликты по системным и конфигурационным файлам для систем, установленных на одном разделе;

6. возможность дополнительной настройки конфигураций операционных систем и легкого их добавления и удаления;

7. встроенная защита от загрузочных вирусов;

8. легкое восстановление в случае повреждения MBR;

9. поддержка больших жестких дисков во всех режимах современных подсистем BIOS;

10. возможность установки паролей отдельно на меню загрузки и на выбранные конфигурации.

Формирование таблицы разделов осуществляется с помощью специальных утилит. Обычно их называют FDisk (от слов «Form Disk» — формирование диска). Хотя есть и иные программы, которые могут делать с разделами намного больше, чем простейшие утилиты FDisk от Microsoft. в последнее время появилось большое количество утилит, которые предоставляют возможность более наглядно представить разбиение диска на разделы, поскольку в них используется графический интерфейс. Эти программы успешно и корректно работают с наиболее распространенными типами разделов (разделы под FAT, FAT32, NTFS). Однако созданы они в основном для работы в среде Win32API, что часто ограничивает возможность их применения. Одной из самых известных и мощных программ для работы с разделами жесткого диска является Partition Magic фирмы Power Quest.

Еще одной мощной утилитой такого рода является Администратор дисков, входящий в состав уже упоминавшегося менеджера загрузки OS Selector от Acronis. Эта утилита позволяет:

1. создавать разделы любых типов и форматировать их под файловые системы FAT 16, FAT32, NTFS, Ext2FS (Linux), Linux ReiserFS, Linux Swap, при этом можно выбирать точное или произвольное расположение раздела и указывать его параметры;

2. получать подробную информацию о разделах и о самих жестких дисках;

3. удалять любые разделы;

4. преобразовывать разделы из FAT 16 в FAT32 и обратно;

5. копировать и перемещать разделы с FAT16, FAT32, NTFS, Linux Ext2FS, Linux ReiserFS и Linux Swap;

6. изменять размеры разделов с вышеперечисленными файловыми системами;

7. выбирать размер кластера вручную во время любой операции создания, копирования, перемещения или изменения размера раздела;

8. посекторно редактировать содержимое жестких дисков и разделов с помощью встроенного многооконного редактора дисков.

Утилиты формирования дисков первым элементом таблицы разделов всегда делают первичный раздел. Вторым элементом становится расширенный раздел, в котором, в свою очередь, организуется один или несколько логических дисков. При этом создаваемые логические диски помимо известного буквенного именования (диски С:, D:, Е: и т. д.) получают еще и так называемые номера разделов. Диск С: получает в этом случае порядковый номер 1, диск D: — 2, диск Е: — 3, и т. д. Именно номера разделов используются в файле boot.ini, который указывает системному загрузчику Windows NT/2000/XP, где находятся файлы выбранной операционной системы.

Файловые системы

Система управления файлами является основной в абсолютном большинстве современных операционных систем. Все современные операционные системы используют файлы и соответствующее программное обеспечение для работы с ними:

· через файловую систему связываются по данным многие системные обрабатывающие программы.

· с помощью этой системы решаются проблемы централизованного распределения дискового пространства и управления данными.

· пользователи получают более простые способы доступа к своим данным, которые они размещают на устройствах внешней памяти.

Существует большое количество файловых систем, созданных для разных устройств внешней памяти и разных операционных систем. В них используются, соответственно, разные принципы размещения данных на носителе. наиболее распространенные файловые системы, с которыми мы сталкиваемся при работе на персональных компьютерах - системы FAT, FAT32 и NTFS. Знание основных принципов их построения необходимо не только специалисту в области вычислительной техники, но и обычному пользователю. Особенно актуальными становятся знания возможностей файловой системы NTFS, которая сегодня получает все большее распространение.

 

Функции файловой системы и иерархия данных

под файлом обычно понимают именованный набор данных, организованных в виде совокупности записей одинаковой структуры. Для управления этими данными создаются соответствующие файловые системы. Файловая система предоставляет возможность иметь дело с логическим уровнем структуры данных и операций, выполняемых над данными в процессе их обработки. Именно файловая система определяет способ организации данных на диске или на каком-нибудь ином носителе. Специальное системное программное обеспечение, реализующее работу с файлами по принятым спецификациям файловой системы, часто называют системой управления файлами. Именно системы управления файлами отвечают за создание, уничтожение, организацию, чтение, запись, модификацию и перемещение файловой информации, а также за управление доступам к файлам и за управление ресурсами, которые используются файлами. Назначение системы управления файлами — предоставление более удобного доступа к данным, организованным как файлы, то есть вместо низкоуровневого доступа к данным с указанием конкретных физических адресов нужной нам записи используется логический доступ с указанием имени файла и записи в нем.

Благодаря системам управления файлами пользователям предоставляются следующие возможности:

1. создание, удаление, переименование (и другие операции) именованных наборов данных (файлов) из своих программ или посредством специальных управляющих программ, реализующих функции интерфейса пользователя с его данными и активно использующих систему управления файлами;

2. работа с недисковыми периферийными устройствами как с файлами;

3. обмен данными между файлами, между устройствами, между файлом и устройством (и наоборот);

4. работа с файлами путем обращений к программным модулям системы управления файлами (часть API ориентирована именно на работу с файлами);

5. защита файлов от несанкционированного доступа.

Файловая система — это множество именованных наборов данных, организованное по принятым спецификациям, которые определяют способы получения адресной информации, необходимой для доступа к этим файлам.

Таким образом, термин файловая система определяет, прежде всего, принципы доступа к данным, организованным в файлы. Тот же термин используют и по отношению к конкретным файлам, расположенным на том или ином носителе данных. А термин система управления файлами следует употреблять по отношению к конкретной реализации файловой системы, то есть это — комплекс программных модулей, обеспечивающих работу с файлами в конкретной операционной системе.

Информация, с которой работает человек, обычно структурирована. Это, прежде всего, позволяет более эффективно организовать хранение данных, облегчает их поиск, предоставляет дополнительные возможности в именовании. Аналогично, и при работе с файлами желательно ввести механизмы структурирования. Проще всего организовать иерархические отношения. Для этого достаточно ввести понятие каталога (directory).

Файловая система FAT

Файловая система FAT (File Allocation Table — таблица размещения файлов) получила свое название благодаря простой таблице, в которой указываются:

□ непосредственно адресуемые участки логического диска, отведенные для размещения в них файлов или их фрагментов;

□ свободные области дискового пространства;

□ дефектные области диска (эти области содержат дефектные участки и не гарантируют чтение и запись данных без ошибок).

В файловой системе FAT дисковое пространство любого логического диска делится на две области: системную область и область данных.

Системная область состоит из следующих компонентов (расположенных в логическом адресном пространстве друг за другом):

□ загрузочной записи (Boot Record, BR);

□ зарезервированных секторов (Reserved Sectors, ResSec);

□ таблицы размещения файлов (File Allocation Table, FAT);

□ корневого каталога (Root Directory, RDir).

Область данных, в отличие от системной области, доступна через пользовательский интерфейс операционной системы.

Таблица размещения файлов

Таблица размещения файлов является очень важной информационной структурой, она представляет собой адресную карту области данных, в которой описывается и состояние каждого участка области данных, и принадлежность его к тому или иному файловому объекту.

Всю область данных разбивают на так называемые кластеры. Кластер представляет собой один или несколько смежных секторов в логическом дисковом адресном пространстве (точнее — только в области данных). Кластер — это минимальная адресуемая единица дисковой памяти, выделяемая файлу (или некорневому каталогу). Кластеры введены для того, чтобы уменьшить количество адресуемых единиц в области данных логического диска.

Каждый файл занимает целое число кластеров. Последний кластер при этом может быть задействован не полностью, что при большом размере кластера может приводить к заметной потере дискового пространства. Для указания номера кластера в файловой системе FAT16 используется 16-разрядное слово, следовательно, можно иметь до 216 = 65 536 кластеров (с номерами от 0 до 65 535).

Логическое разбиение области данных на кластеры как совокупности секторов взамен использования одиночных секторов имеет следующий смысл:

· прежде всего, уменьшается размер самой таблицы FAT;

· уменьшается возможная фрагментация файлов;

· ускоряется доступ к файлу, так как в несколько раз сокращается длина цепочек фрагментов дискового пространства, выделенных для него.

Однако слишком большой размер кластера ведет к неэффективному использованию области данных, особенно в случае большого количества маленьких файлов.

Поскольку файлы на диске изменяются (удаляются, перемещаются, увеличиваются или уменьшаются), то упомянутое правило выделения первого свободного кластера для новой порции данных приводит к фрагментации файлов, то есть данные одного файла могут располагаться не в смежных кластерах, а порой в очень удаленных друг от друга, образуя сложные цепочки. Естественно, что это приводит к существенному замедлению работы с файлами.

В связи с тем, что таблица FAT используется при доступе к диску очень интенсивно, она обычно загружается в оперативную память (в буферы ввода-вывода или в кэш) и остается там настолько долго, насколько это возможно. Если таблица большая, а файловый кэш, напротив, относительно небольшой, в памяти размещаются только фрагменты этой таблицы, к которым обращались в последнее время.

В связи с чрезвычайной важностью таблицы FAT она обычно хранится в двух идентичных экземплярах, второй из которых непосредственно следует за первым. Обновляются копии FAT одновременно, используется же только первый экземпляр. Если он по каким-либо причинам окажется разрушенным, то произойдет обращение ко второму экземпляру.

Корневой каталог отличается от обычного файла-каталога тем, что он помимо размещения в фиксированном месте логического диска имеет еще и фиксированное число элементов.

Файловая система FAT32

Одной из важнейших характеристик исходной файловой системы FAT было использование имен файлов формата 8.3. К стандартной системе FAT (имеется в виду прежде всего реализация FAT 16) добавилась еще система FAT32, используемая в последней редакции ОС Windows 95 и Windows 98. Ныне файловая система FAT32 поддерживается и такими последними системами, как Windows Millennium Edition, Windows 2000 и Windows XP. Имеются реализации FAT32 и для Windows NT, и для Linux.

Основными недостатками файловых систем FAT, которые привели к разработке новой реализации файловой системы, основанной на той же идее (таблице размещения файлов), являются большие потери на кластеризацию при больших размерах логического диска и ограничения на сам размер логического диска. Поэтому в Microsoft Windows 95 OEM Service Release 2 на смену системе FAT пришла файловая система FAT32, которая является полностью самостоятельной 32-разрядной файловой системой и содержит многочисленные усовершенствования и дополнения по сравнению с предыдущими реализациями FAT. Самое принципиальное отличие заключается в том, что FAT32 намного эффективнее расходует дисковое пространство. Прежде всего, кластеры в этой системе меньше, чем кластеры в предыдущих версиях, в которых могло быть не более 65 535 кластеров на логический диск (соответственно с увеличением размера диска приходилось увеличивать и размер кластеров). Следовательно, даже для дисков размером до 8 Гбайт FAT32 может использовать 4-килобайтные кластеры. В результате по сравнению с дисками FAT16 экономится значительное дисковое пространство (в среднем 10-15 %). В FAT32 проблема решается за счет того, что собственно сама таблица размещения файлов в этой файловой системе может содержать до 228 кластеров2.

FAT32 также может перемещать корневой каталог и использовать резервную копию FAT вместо стандартной. Расширенная загрузочная запись FAT32 позволяет создавать копии критически важных структур данных; это повышает устойчивость дисков FAT32 к нарушениям структуры таблицы размещения файлов по сравнению с предыдущими версиями. Корневой каталог в FAT32 представлен в виде обычной цепочки кластеров, следовательно, он может находиться в произвольном месте диска, что снимает действовавшее ранее ограничение на размер корневого каталога (512 элементов).

Вместе с адресными данными в таблице FAT хранятся атрибуты файла. Шесть из восьми указанных разрядов используются DOS. Они перечислены ниже.

 □ A (Archive — архив). Показывает, что файл был открыт программой таким образом, чтобы у нее была возможность изменить содержимое этого файла. DOS устанавливает этот разряд при открытии файла

□ D (Directory — каталог). Показывает, что данный элемент каталога указывает на подкаталог, а не на файл.

□ V (Volume — том). Применяется только к одному элементу каталога в корневом каталоге. В нем собственно и хранится имя дискового тома. Этот атрибут также применяется в случае длинных имен файлов.

□ S (System — системный). Показывает, что файл является частью операционной системы или специально отмечен подобным образом прикладной программой, что иногда делается для защиты от копирования.

□ Н (Hidden — скрытый). К скрытым относятся также файлы с установленным атрибутом S (системный), которые не отображаются по команде DIR.

□ R (Read only — только для чтения). Показывает, что данный файл не подлежит изменению. Разумеется, поскольку это лишь разряд байта, хранящегося на диске, то любая программа может изменить этот разряд и, значит, разрешить изменение соответствующего файла. Этот атрибут в основном используется для примитивной защиты от пользовательских ошибок, то есть он помогает избежать неумышленного удаления или изменения ключевых файлов.

Следует отметить, что файл, помеченный одним или более из указанных выше атрибутов, может иметь вполне определенный смысл. Например, большинство файлов, отмечаемых в качестве системных, отмечаются также атрибутами «скрытый» и «только для чтения».

 

Файловая система NTFS

В название файловой системы NTFS (New Technology File System - файловая система новой технологии) входят слова «новая технология». Действительно, файловая система NTFS по сравнению с широко известной FAT 16 (и даже FAT32) содержит ряд значительных усовершенствований и изменений. С точки зрения пользователей файлы по-прежнему хранятся в каталогах, ныне при работе в среде Windows часто называемых папками (folders). Однако в ней появилось много новых особенностей и возможностей.

Основные возможности файловой системы NTFS

При проектировании NTFS особое внимание было уделено надежности, механизмам ограничения доступа к файлам и каталогам, расширенной функциональности, поддержке дисков большого объема и пр.

Надежность

Высокопроизводительные компьютеры и системы совместного использования должны обладать повышенной надежностью, которая является ключевым элементом структуры и функционирования NTFS. Система NTFS обладает определенными средствами самовосстановления. Она поддерживает различные механизмы проверки целостности системы, включая ведение журналов транзакций, позволяющих воспроизвести файловые операции записи по специальному системному журналу. При протоколировании файловых операций система управления файлами фиксирует в специальном служебном файле (журнале) происходящие изменения. В начале операции, связанной с изменением файловой структуры, делается соответствующая пометка. Если во время файловых операций происходит какой-нибудь сбой, то из-за упомянутой отметки операция остается помеченной как незавершенная. При выполнении процедуры проверки целостности файловой системы после перезагрузки машины эти незавершенные операции отменяются, и файлы возвращаются в исходное состояние. Если же операция изменения данных в файлах завершается нормальным образом, то в файле журнала эта операция отмечается как завершенная.

Ограничения доступа к файлам и каталогам

Файловая система NTFS поддерживает объектную модель безопасности операционной системы Windows NT и рассматривает все тома, каталоги и файлы как самостоятельные объекты. Система NTFS обеспечивает безопасность на уровне файлов и каталогов. Это означает, что разрешения доступа к томам, каталогам и файлам могут зависеть от учетной записи пользователя и тех групп, к которым он принадлежит. Каждый раз, когда пользователь обращается к объекту файловой системы, его разрешения на доступ проверяются по уже упоминавшемуся списку управления доступом (ACL) для данного объекта. Если пользователь обладает необходимым уровнем разрешений, его запрос удовлетворяется; в противном случае запрос отклоняется.

Расширенная функциональность

Система NTFS проектировалась с учетом возможного расширения. В ней были воплощены многие дополнительные возможности — повышенная отказоустойчивость, эмуляция других файловых систем, мощная модель безопасности, параллельная обработка потоков данных и создание файловых атрибутов, определяемых пользователем. Эта система также позволяет сжимать как отдельные файлы, так и целые каталоги.

Поддержка дисков большого объема

Система NTFS создавалась с расчетом на работу с большими дисками. Она уже достаточно хорошо проявляет себя при работе с томами объемом 300-400 Мбайт и выше. Чем больше объем диска и чем больше на нем файлов, тем больший выигрыш мы получаем, используя NTFS вместо FAT 16 или FAT32. Максимально возможные размеры тома (и размеры файла) составляют 16 Эбайт (один экзабайт равен 264 байт, или приблизительно 16 000 млрд гигабайт), в то время как при работе под Windows NT/2000/XP диск с FAT 16 не может иметь размер более 4 Гбайт, а с FAT32 — 32 Гбайт. Количество файлов в корневом и некорневом каталогах при использовании NTFS не ограничено. Поскольку в основу структуры каталогов NTFS заложена эффективная структура данных, называемая «двоичным деревом», время поиска файлов в NTFS не связано линейной зависимостью с их количеством (в отличие от систем на базе FAT). Наконец, помимо немыслимых размеров томов и файлов, система NTFS также обладает встроенными средствами сжатия, что позволяет экономить дисковое пространство и размещать в нем больше файлов. Напомним, что сжатие можно применять как к отдельным файлам, так и целым каталогам и даже томам (и впоследствии отменять или назначать их по своему усмотрению).

Дата: 2019-12-10, просмотров: 202.