Качественная картина изменения плотности зарядов, поля и потенциала
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Будем считать, что плотность «неподвижных» ионов постоянна в пространстве, будучи одинаковой, в плазме и в приэлектродных слоях (в дальнейшем – просто в «слоях»). В однородной плазме, очевидно, однородно и электрическое поле. Следовательно, электронный газ повсюду (как целое) колеблется с одинаковой амплитудой A около среднего положения. Те электроны, которые в момент прохождения средней точки, отстояли от электродов на расстояниях, меньших амплитуды A, в результате первых же качаний соприкасаются с металлом и навсегда уходят в него (а если электрод покрыт диэлектриком – необратимо прилипают к поверхности последнего). При последующих качаниях электроны лишь на мгновение касаются твердых поверхностей.

Таким образом, в момент прохождения электронным газом положения равновесия по обе стороны плазмы остаются слои некомпенсированного положительного заряда толщиной A. При этом газ в целом оказывается заряженным положительно. Картина качаний электронного газа в предположении об отсутствии диффузионных потоков зарядов к электродам и диффузионного размытия границ между плазмой и слоями показана на рис. 2 через каждые четверть периода. Согласно уравнению электростатики

 (1)

 

Внутри слоев, где ne = 0, a n+ = const, мгновенное поле Е линейным образом зависит от х, а соответствующий потенциал

 

Рис. 2 Схема качания электронного газа: штриховые линии – плотность ионов постоянна; сплошные – распределение ne (x, t) через каждые четверть периода

 

 (2)

 

изменяется с х по параболическому закону.

В плазме, где Е от х не зависит, мгновенный потенциал изменяется в пространстве по линейному закону (рис. 3). Ток в плазме чаща всего в большей своей части является током проводимости, во всяком случае, в разрядах среднего давления. Следовательно, разрядный ток j большую часть периода направлен в ту же сторону, что и поле в плазме Ер. Это показано стрелками на рис. 3.

 

Рис. 3 Распределение поля и потенциала между плоскими электродами, соответствующие распределениям n+, ne (стрелками показаны направления тока j)

 

Токи зарядов на электроды в приближении неподвижных ионов, мгновенного касания плазмой электродов и отсутствия электронной диффузии, т.е. теплового движения, также отсутствуют.

В среднем по времени синусоидальный потенциал левого электрода, так же как и потенциал заземленного правого, равен нулю. Потенциал же плазмы (относительно электродов) всегда положителен. Соответственно, в слоях поле в среднем направлено к электродам. Это объясняется тем, что в промежутке газ в целом заряжен положительно, а потому обладает в среднем постоянным положительным потенциалом V. В отличие от рассматриваемой упрощенной модели в реальных условиях, из плазмы в слой все время поступает относительно небольшой тепловой поток ионов. В разрядах низкого давления ионы проходят слой почти без столкновений и набирают под действием поля энергию порядка постоянного потенциала плазмы. Она может составлять сотни электрон-вольт [15].

Система уравнений для определения параметров разряда

Рассмотрим описанную выше картину, пользуясь уравнениями движения электронов в поле и электростатики. Обозначим через d1 и d2 мгновенные толщины левого и правого слоев. В отсутствие токов зарядов на электроды суммарные заряд и толщина двух слоев остаются неизменными:

 

en+d1 + en+d2 = const, и d1 + d2 = 2A (3)

 

Согласно (1) поля в левом (Е1) и правом (Е2) слоях распределены как

 

Е1 = Ер – 4πen(d1 – x), E2 = Ep + 4πen [x – (L – d2)] (4)

 

Потенциалы плазмы относительно левого и правого электродов, т.е. мгновенное падение напряжения в слоях, равны

 

V1 = 2πend12, V2 = 2πend22 (5)

Ep = V/L + 8πen (A/L) y, y = d1 – A (6)

 

Оно параметрическим образом связывает Ер со смещением у левой границы плазмы (равным также смещению любого электрона из среднего положения). С другой стороны, смещение подчиняется общему уравнению движения электрона. При этом υ = y’’, а под Еаsinωt следует подразумевать поле в плазме Ер. Подставляя в общее уравнение движения электрона поле Ер, взятое из (6), и используя выражение

 

ωр = 5,64*104 (ne)1/2 c-1 (7)

 

для плазменной частоты, получаем уравнение для смещения электронов плазмы:


                   (8)

 

Дальше удобнее оперировать гармоническими величинами в комплексной форме. Пусть к электродам приложено напряжение V=Vaeiωt. Установившееся решение уравнения (8) есть

              (9)

 

Приравнивая действительную амплитуду смещения у величине A, которой она равна по определению, имеем

    (10)

 

Это – алгебраическое уравнение четвертой степени относительно A. Корень уравнения, который имеет физический смысл, определяет амплитуду колебаний электронов в зависимости от амплитуды напряжений Vа, частоты ω и плотности плазмы п. Последняя входит в (10) через ωр в виде неизвестного пока параметра.

Как известно плотность плазмы связана с амплитудой поля в ней Ер, а уравнением баланса числа зарядов, например условием ионизационно-рекомбинационного равновесия (11):

 

υi,ВЧ а) = υрек = βn (11)

 

Согласно (6) поле в плазме


 (12)

 

Тем самым замыкается система уравнений модели, определяющая все параметры разряда. Уравнения (10) и (11) с амплитудой Ер, а, определенной из (12), образуют систему двух уравнений для нахождения А и п в зависимости от приложенного напряжения (Vа и ω). Зная их, можно вычислить любые другие величины, например ток и импеданс разряда, а также построить ВАХ.



Разрядный ток

Плотность разрядного тока, т.е. тока, текущего во внешней цепи и, в частности, через электроды, по определению равна скорости изменения плотности поверхностного заряда q на левом электроде (с учетом выбранного направления оси х). Электрод можно считать идеальным проводником. Поля, а потому и тока смещения Е/4π в нем нет. Плотность отрицательного заряда q на электроде совпадала бы по модулю с количеством положительного заряда в левом слое на единице площади end1, если бы плазма была также идеальным проводником. В плазме имеется весьма заметное поле Eр, которое призвано поддерживать ток и, возможно, состояние ионизации. Согласно законам электростатики оно связано с плотностями поверхностного заряда равенством

 

 (13)

 

Дифференцируя равенство (13) по времени, находим плотность разрядного тока в видe

 


 (14)

 

Величина j не зависит от х, будучи одинаковой, во всех сечениях разрядного промежутка. Первое слагаемое представляет собой плотность тока электронов (проводимости плюс поляризации), второе – «чистый» ток смещения. Появление последнего в выражении для сохраняющейся величины j – следствие несовершенства проводящих свойств плазмы. Именно по этой причине заряд в слое отличается по модулю от q, не успевая мгновенно реагировать на изменение заряда на электроде, который поступает из внешней цепи (или уходит во внешнюю цепь) под действием ЭДС источника питания. Подставив в (14) Ер из (6), придадим выражению для плотности тока вид

 

     (15)

 

В отсутствие разряда (при п = 0) остается только второе слагаемое. Это реактивный ток, который течет через «вакуумный» конденсатор, образованный двумя электродными пластинами.

Зажигание разряда и появление первого слагаемого в электрическом отношении равносильно подключению параллельно конденсатору некоего комплексного сопротивления (рис. 4), ибо согласно (9) первое слагаемое также пропорционально напряжению V .

Рис. 4 Схемы разрядного промежутка: а) в отсутствии разряда; б) соответствующая разрядному току (15)

Однако появление достаточно хорошо ионизированной плазмы внутри конденсатора столь резко меняет характер электрической системы, что более адекватной, является эквивалентная электрическая схема с последовательным включением элементов.

«Импеданс» разрядного промежутка с плазмой.

Подставляя (9) в (15) и совершая небольшое преобразование, запишем

 

 (16)

 

Величина Z имеет смысл импеданса (комплексного сопротивления) на единицу площади промежутка между электродами с плазмой внутри. Здесь электрическая система является нелинейной, так как величины А и п в Z сами зависят от амплитуды напряжения, т.е. они определяются уравнениями (10) и баланса числа зарядов. Если найти и подставить функции А( Va ) и n ( V а ) в (16), можно получить зависимость ja от Vа, т.е. ВАХ разряда. Несмотря на то, что А и п в (16) зависят от V , выражению для Z полезно дать интерпретацию так, как будто А и n – фиксированные величины, т.е. как будто Z – истинный импеданc электрической системы.

В пределе достаточно сильной ионизации, когда ωp2 >> ω2 и ωр2 >> ωυmp2 ~ n), что и в самом деле свойственно ВЧ разрядам, интерпретация очень наглядна. В этом предельном случае

 (17)


Где σt – комплексная проводимость плазмы.

Величина 1/(8πА) есть эквивалентная емкость (на единицу площади) двух последовательно включенных емкостей, соответствующих слоям. Каждая из них по отдельности меняется во времени, но эквивалентная емкость двух слоев неизменна. Таким образом, в соответствии с (17) электрическую систему можно рассматривать как последовательное соединение емкостей слоев комплексного сопротивления плазмы (рис. 5).

 

Рис. 5 Схемы ВЧЕ разряда, соответствующие импедансу (17):

а) слои представлены отдельными емкостями;

б) емкости слоев объединены.



Дата: 2019-12-10, просмотров: 220.