Перевод чисел из одной системы счисления
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

АРИФМЕТИЧЕСКИЕ ОСНОВЫ ЦВМ

 

Системы счисления

 

В повседневной практике для представления чисел люди пользуются почти исключительно десятичной системой счисления. Лишь в редких случаях встречаются остатки других систем - римский счет, двенадцатиричная система (часы), шестидесятиричная (минуты).

Однако система изображения чисел, которая веками складывалась применительно к ручному труду, не позволяет получить наиболее эффективные методы выполнения вычислений. По этой причине в вычислительной технике применяются другие системы счисления и чаще всего - двоичная.

Введем несколько определений.

Cистема счисления - совокупность символов и правил для обозначения чисел.                                                                          

Разделяют системы счисления позиционные и непозиционные. Непозиционная система счисления задается перечислением изображаемых в ней значений. Позиционная система счисления характеризуется основанием и тем, что числа, как правило, представляются несколькими разрядами (являются многоразрядными), а вес любого разряда определяется его позицией в числе.

Oснование позиционной системы счисления определяет количество различных цифр (символов), допустимое в системе счисления. Это же число определяет, во сколько раз вес цифры данного разряда меньше веса цифры соседнего старшего разряда.

Так, в десятичной системе счисления, основание которой равно 10, различают 10 арабских цифр - 0, 1, 2, ..., 9. Следовательно, при ее использовании для записи числа, не превышающего девяти, достаточно одной цифры, и такое число записывается как одноразрядное. А в случае записи числа, большего девяти, оно представляется как многоразрядное. При этом вес каждого более старшего (расположенного слева от текущего) разряда в десять (основание системы счисления) раз больше текущего.

Так, например, число 359 - трехразрядное, и в нем 9 - цифра разряда единиц, 5 - цифра разряда десятков, 3 - цифра разряда сотен (в 10 раз превышает вес разряда десятков). При этом значение трехразрядного числа 359 получается суммированием трех слагаемых : 3 сотни + 5 десятков + 9 единиц.

Общее правило определения веса разряда многоразрядного числа таково:

 Если пронумеровать разряды целого числа справа налево, начиная от 0 для разряда единиц, то вес любого разряда получается возведением основания системы счисления в степень, значение которой равно номеру разряда.                                                                      

        

Так, вес самого младшего разряда целых чисел равен 1, поскольку номер разряда равен 0, а любое число, в том числе и число 10, возведенное в нулевую степень, дает в результате единицу. Вес следующего слева разряда равен 10 в степени 1, т.е. равен десяти, и т.д.

Это же правило справедливо и для записи дробных чисел. При этом разрядам справа от разряда единиц, имеющего номер 0, присваиваются отрицательные значения: -1, -2, и т.д., а их веса получаются также при возведении основания 10 в соответствующую степень. Так, например, вес третьего разряда в дробной части числа 42,9724 будет равен 10 в степени (-3), т.е. равен одной тысячной.

Указанное правило можно проиллюстрировать следующим образом:

Число 7 5 0 6 8 , 2 5 9
Номер разряда 4 3 2 1 0 -1 -2 -3
Вес разряда 10000 1000 100 10 1 0,1 0,01 0,001

Как видно из примера, в позиционной системе счисления достаточно знать значение основания системы счисления, символы, изображающие отдельные цифры, и указанное правило, чтобы представить любое число.

В вычислительной технике широко применяют двоичную, восьмеричную и шестнадцатиричную систему счисления.

Двоичная система счисления имеет основание 2, и, следовательно, две разных цифры - 0 и 1; восьмеричная - восемь разных цифр - 0, 1, 2, 3, 4, 5, 6, 7, а шестнадцатиричная - шестнадцать цифр - десять арабских цифр от 0 до 9 и еще шесть символов -

    А (цифра, изображающая десять),             D (цифра тринадцать),

    В (цифра одиннадцать),               E (цифра четырнадцать),

    С (цифра двенадцать),             F (цифра пятнадцать).

Проще всего сопоставить запись одних и тех же чисел в этих системах счисления можно с использованием таблицы 1, приведенной на следующей странице.

Мы уже говорили о том, что современные цифровые ЭВМ все используют в качестве основной двоичную систему счисления. К ее достоинствам относится:

· простота выполнения арифметических и логических операций, что влечет за собой простоту устройств, реализующих эти операции;

· возможность использования аппарата алгебры логики (булевой алгебры) для анализа и синтеза операционных устройств ЭВМ.

К неудобствам двоичной системы счисления относится необходимость перевода чисел из десятичной в двоичную и наоборот, а также то, что запись числа в двоичной системе громоздка (требует большего числа разрядов, чем привычная для человека десятичная). По этой и ряду других причин, кроме двоичной применяются восьмеричная и шестнадцатиричная системы счисления.

                                                                                Таблица 1.1

 

С и с т е м а с ч и с л е н и я

10 2 8 16
0       0 0 0
1       1 1 1
2    0 1 2 2
3    1 1 3 3
4 1 0 0 4 4
5 1 0 1 5 5
6 1 1 0 6 6
7 1 1 1 7 7
8 1 0 0 0 1 0 8
9 1 0 0 1 1 1 9
10 1 0 1 0 1 2 A
11 1 0 1 1 1 3 B
12 1 1 0 0 1 4 C
13 1 1 0 1 1 5 D
14 1 1 1 0 1 6 E
15 1 1 1 1 1 7 F
16 1 0 0 0 0 2 0 1 0

 

Совместное использование указанных систем обусловлено двумя причинами:

· в восьмеричной и шестнадцатиричной системах любое число записывается более компактно, нежели двоичное;

· простотой преобразования из двоичной в восьмеричную (шестнадцатирич-ную) систему счисления и наоборот.

Приведем правила перевода чисел из двоичной системы в восьмеричную (шестнадцатиричную) и наоборот.

П1 .Правило перевода “8с/с -> 2c/c”

 

При переводе многоразрядного числа каждую цифру исходного восьмеричного числа представить всегда точно тремя двоичными цифрами, взятыми из приведенной выше таблицы. При этом, если для записи соответствующей восьмеричной цифры в виде двоичной требуется менее трех двоичных цифр, двоичный эквивалент дополняется слева нулями (незначащие нули не исказят значения числа). Таким образом, например, при записи четырехразрядного восьмеричного числа должно получиться двенадцатиразрядное двоичное. После окончания такого преобразования можно отбросить старшие для всего числа незначащие двоичные цифры.

Отметим, что три цифры принято называть триадой. Поэтому можно сказать, что при описываемом переводе каждая восьмеричная цифра заменяется соответствующей ей триадой двоичных цифр.

Если исходное число дробное, т.е. имеет целую и дробную часть, то в двоичном числе запятая ставится между триадами, представляющими соответствующие цифры исходного числа.

Пример.

Преобразуем восьмеричное число 371,62.

Для этого запишем для каждой цифры соответствующую триаду:

3 --> 011

7 --> 111

1 --> 001

6 --> 110

2 --> 010

Теперь можно записать число в двоичной форме (для наглядности между триадами поместим пробелы):

              371,62 -> 011 111 001 , 110 010

И, наконец, запишем полученное двоичное число так, как это принято в математике, без незначащих нулей, а также отбросив правые нули в дробной части числа:

371,62 -> 11111001,11001

П2. Правило перевода “2с/с -> 8c/c”

 

При переводе многоразрядного двоичного числа в восьмеричную форму поступают следующим образом: Исходное число разбивают на триады. При этом для целой части числа разбиение проводят от местонахождения запятой влево, а для дробной части - от этого же места вправо. Затем самая левая группа при необходимости дополняется незначащими нулями до образования триады, а самая правая группа только в дробной части дополняется нулями справа также до образования полной триады. После этого каждая триада заменяется соответствующей восьмеричной цифрой. Местоположение запятой сохраняется по тем же правилам, что и в правиле П1.

Пример.

Представить двоичное число 1101100,01111101 в форме восьмеричного.

Разобьем исходное число на группы по три цифры, приняв в качестве точки отсчета местоположение запятой (для наглядности между триадами поместим пробелы):

              1 101 100 , 011 111 01

Теперь дополним до трех цифр нулями самую левую группу слева и самую правую группу справа:

              001 101 100 , 011 111 010

И, наконец, заменим каждую триаду соответствующей восьмеричной цифрой:

          001 101 100 , 011 111 100 --> 154,372

 

П3. Правило перевода “16с/с -> 2c/c”

 

При переводе многоразрядного шестнадцатиричного числа в двоичную форму каждую цифру исходного числа заменяют группой точно из четырех двоичных цифр (заменяют тетрадой двоичных цифр). Местоположение запятой сохраняется по тем же правилам, что и в правиле П1. В окончательной записи можно отбросить самые левые (незначащие) нули и самые правые нули дробной части.

Пример. Преобразовать шестнадцатиричное число “6C,7D”  в двоичную форму.

Для этого запишем для каждой цифры соответствующую тетраду:

          6 --> 0110

          C --> 1100

          7 --> 0111

          D --> 1101

Теперь можно записать число в двоичной форме (для наглядности между тетрадами поместим пробелы):

    6C,7D -> 0110 1100 , 0111 1101

И, наконец, запишем полученное двоичное число так, как это принято в математике, без незначащих нулей:

    6C,7D -> 1101100,01111101

П4. Правило перевода “2с/с -> 16c/c”

 

При переводе многоразрядного двоичного числа в шестнадцатиричную форму поступают следующим образом. Исходное число разбивают на тетрады. При этом для целой части числа разбиение проводят от местонахождения запятой влево, а для дробной части от этого же места вправо. Затем самая левая группа при необходимости дополняется незначащими нулями до образования тетрады, а самая правая группа только в дробной части дополняется нулями справа также до образования полной тетрады. После этого каждая тетрада заменяется соответствующей шестнадцатиричной цифрой. Местоположение запятой сохраняется по тем же правилам, что и в правиле П1.

Пример. Представить двоичное число 1101100,01111101 в форме шест-надцатиричного.

Разобьем исходное число на группы по четыре цифры, приняв в качестве точки отсчета местоположение запятой (для наглядности между тетрадами поместим пробелы):

              110 1100 , 0111 1101

Теперь дополним до четырех цифр нулями слева самую левую группу:

              0110 1100 , 0111 1101

И, наконец, заменим каждую тетраду соответствующей шестнадцатиричной цифрой:

          0110 1100 , 0111 1101 -> 6С,7D.

Шестнадцатиричная и восьмеричная системы счисления используются для более компактной и удобной записи двоичных чисел.

Так, известность шестнадцатиричной системе принесло то, что с ее использованием удобно представлять программы в кодах большинства современных ЭВМ.

В другую

 

Поскольку в практической деятельности люди привыкли оперировать десятичной системой счисления, а в ЭВМ числа представляются в двоичной, необходимо научиться преобразовывать числа из одной системы счисления в другую. Рассмотренные выше правила перевода из двоичной системы счисления в восьмеричную и шестнадцатиричную и наоборот носят частный характер и не могут быть распространены на другие системы. Здесь же мы рассмотрим общие правила перевода, справедливые для любой пары систем счисления, хотя и более громоздкие и трудоемкие по сравнению с рассмотренными выше.

Правила перевода целых и дробных чисел не совпадают, поэтому приведем три правила перевода чисел из системы счисления с основанием R в систему счисления с основанием Q.

Сложение и вычитание чисел

 

Сложение и вычитание чисел в обратном и дополнительном кодах выполняется с использованием обычного правила арифметического сложения многоразрядных чисел. Общей для этих кодов особенностью (и очень удобной особенностью) является лишь то, что при поразрядном сложении чисел разряды, изображающие знаки чисел рассматриваются как равноправные разряды двоичного числа, которые складываются друг с другом и с единицей переноса из предыдущего разряда числа по обычным правилам арифметики. Различия же обратного и дополнительного кодов связаны с тем, что делается с единицей переноса из старшего разряда (изображающего, как неоднократно говорилось, знак числа).

При сложении чисел в дополнительном коде единица переноса из старшего разряда игнорируется (теряется), а в обратном коде эту единицу надо прибавить к младшему разряду результата.

Пример 1. Сложить числа +12 и -5.

а) В обратном коде

Десятичная форма ->       +12             -5

Двоичная форма ->   +1100          -101

Прямой код       -> 00001100     10000101

Обратный код   -> 00001100  11111010

Выполним сложение в столбик:

0 0 0 0 1 1 0 0

1 1 1 1 1 0 1 0

===============

(1) 0 0 0 0 0 1 1 0

                     + 1          (Добавление 1 переноса)

==============

0 0 0 0 0 1 1 1

Итак, результат в обратном коде = 00000111.

Поскольку знаковый разряд равен 0, результат положительный, и, следовательно, запись кода числа совпадает с записью прямого кода. Теперь можно восстановить алгебраическую запись результата. Он равен +111 (незначащие нули отброшены), или в десятичной форме +7.

Проверка (+12-5=+7) показывает, что результат верный.

а) В дополнительном коде

Десятичная форма ->       +12              -5

Двоичная форма     ->      +1100           -101

Прямой код           -> 00001100  10000101

Обратный код       -> 00001100  11111010

                                                                               +1

Дополнительный код -> 00001100   11111011

 

Выполним сложение в столбик:

0 0 0 0 1 1 0 0

1 1 1 1 1 0 1 1

============

(1) 0 0 0 0 0 1 1 1

           (Перенос игнорируется)

Итак, результат в дополнительном коде = 00000111.

Поскольку знаковый разряд равен 0, результат положительный, и, следовательно, запись кода числа совпадает с записью прямого кода. Теперь можно восстановить алгебраическую запись результата. Он равен +111 (незначащие нули отброшены), или в десятичной форме +7.

Проверка (+12-5=+7) показывает, что результат верный.

Умножение и деление двоичных чисел производится в ЭВМ в прямом коде, а знаки их используются лишь для определения знака результата. Также как и в математике, умножение сводится к операциям сложения и сдвига. Деление выполняется за счет комбинирования сдвигов, вычитаний (в этот момент могут использоваться обратный или дополнительный коды) и сложений.

Кодирование чисел в ЭВМ

 

В ЭВМ применяется чаще всего одна из двух форм представления чисел:

· с фиксированной запятой;

· с плавающей запятой.

Числа представляются в машинном слове, имеющем для конкретной ЭВМ всегда фиксированное число разрядов (битов). Это число является одной из важнейших характеристик любой ЭВМ и называется разрядностью машины. Разные разряды слова при кодировании команд и данных имеют несовпадающие функциональные назначения. При рассмотрении их функций используют также термин “разрядная сетка машины”.

Числа с плавающей запятой

 

В форме с плавающей запятой число представляется двумя компонентами :  мантиссой и порядком. Мантисса используется для записи цифр числа, а порядок - для указания положения запятой.

Разрядная сетка машины в этом случае делится на несколько частей:

один разряд - для кодирования знака числа (это всегда самый старший, левый, разряд слова);

M разрядов - для записи мантиссы;

Р разрядов - для записи порядка (с учетом его знака).

Местоположение запятой при этом тоже строго фиксируется: считается, что мантисса всегда представляется как число, меньшее единицы, но такое, в котором первая цифра после запятой для всех абсолютно чисел отлична от нуля (единственное исключение составляет число 0). Такая форма представления мантиссы называется нормализованной. Иначе говорят, что мантисса нормализована (приведена к виду: 1 < M <= 0,1).

Ну, а если известно, что мантисса имеет вид “0,цццц..”, то ее код в машинном слове может не содержать символов “0,”, а местоположение запятой предполагается перед старшей значащей цифрой мантиссы.

Порядок Р всегда представляется целым числом со знаком + или -. А для кодирования абсолютной величины порядка остается (Р-1) цифр.

Теперь можно рассмотреть диапазон представимых чисел.

Вначале рассмотрим пример применительно к двоичной системе счисления.

Пусть m - количество разрядов мантиссы,

р - количество разрядов порядка, включая знаковый.

Тогда максимальное по абсолютной величине число будет равно     

     0,1111..1 * 2**(+111..1) = (1-2**(-м))*2**(2**(р-1)-1),

        m цифр      (p-1) цифр

или приблизительно 2**(2**(р-1)-1),

а минимальное по абсолютной величине число  

    0,1000..0 * 2**(-111..1) = 2**(-2**(р-1)).

       m цифр     (p-1) цифр

Итак, число в форме с плавающей запятой представляется последовательностью битов без каких либо явно указанных разделителей, но функционально разбитой на три группы {(знак числа, мантисса числа, порядок числа) или (знак числа, порядок числа, мантисса числа)}.

Рассмотренная форма кодирования числа приводит к следующим последствиям:

· Диапазон чисел, представимых в форме с плавающей запятой, определяется главным образом разрядностью порядка (Р).

· Разрядность мантиссы (М) определяет точное количество значащих цифр в изображении числа.

Следовательно, большинство чисел в форме с плавающей запятой представляется приближенно и причиной этого является ограниченное число разрядов мантиссы. Величина же абсолютной погрешности при приближенном представлении числа зависит как от абсолютной величины числа, так и от разрядности мантиссы и порядка.

Рассмотрим примеры. При этом для простоты положим, что числа представляются в десятичной системе счисления, количество цифр мантиссы равно 4, количество цифр порядка - 2, знак порядка записывается как в математике, а знак числа мы не изображаем, полагая все числа положительными.

Пример 1. Пусть имеется число 12,42=0,1242*10**(+2).

В заданном формате оно представляется цепочкой символов

                   1 2 4 2 + 0 2

При этом

· цепочка “1 2 4 2” представляет мантиссу, т.е. в математическом смысле число 0,1242 ,

· а цепочка “+ 0 2” - порядок - целое положительное число 2.

Тогда ближайшее большее этого число может быть задано цепочкой

                       1 2 4 3 + 0 2       

и оно равно 0,1243*10**(+2)= 12,43.

Таким образом, ближайшие числа на числовой оси, которые различимы при кодировании их в форме с  плавающей запятой для данного примера различаются на 0,01 (абсолютная погрешность представления всех чисел между 12,42 и 12,43 имеет верхнюю оценку 0,01).

Пример 2. Пусть имеется число 0,001242=0,1242*10**(-2).

В заданном формате оно представляется цепочкой символов

                       1 2 4 2 - 0 2,

а ближайшее большее этого число представляется цепочкой

                              1 2 4 3 - 0 2

и равно 0,1243*10**(-2)= 0,001243.

Таким образом, абсолютная погрешность представления всех чисел между 0,001242 и 0,001243 имеет верхнюю оценку 0,000001.

Пример 3. Пусть имеется число 0,1242*10**(+12).

В естественной форме записи это число 124 200 000 000, а в заданном формате оно представляется цепочкой символов

                       1 2 4 2 + 1 2,

а ближайшее большее этого число представляется цепочкой

                       1 2 4 3 + 1 2

и равно 0,1243*10**(+12)= 124 300 000 000.

Таким образом, абсолютная погрешность представления всех чисел между 124 200 000 000 и 124 300 000 000 имеет верхнюю оценку 100 000 000 = 10**8.

Обратите внимание, что в последнем примере невозможно записать ни одного числа в интервале размером 10**8.

Важный вывод, который следует из анализа формы кодирования чисел с плавающей запятой и иллюстрируется в рассмотренных примерах: числа в форме с плавающей запятой, несмотря на то что, эта форма предложена для представления в ЭВМ непрерывных величин, представляются дискретным множеством на числовой оси и располагаются на ней неравномерно.

Если изобразить на (бесконечной) числовой оси области существования чисел, то можно выделить следующие области (см. рис.):

 1                   2                 3        4                  5                 6

                                                                                                                        R

       МаксВещ             -МинВещ   0     +МинВещ        +МаксВещ

· область 1: Х<-МаксВещ - ни одного значения из области нельзя представить в машинном слове (МаксВещ - максимальное по абсолютной величине число, которое можно закодировать);

· область 2:  -МаксВещ<=X<=-МинВещ - в данном интервале может быть представлено столько различных чисел, сколько их можно записать по заданной разрядности мантиссы и порядка;

· область 3: -МинВещ<X<0 - ни одного значения из этой области представить в машинном слове нельзя;

· область 4:  0<X<+МинВещ - ни одного значения из этой области представить в машинном слове нельзя;

· область 5: +МинВещ>=X>=+МаксВещ - в данном интервале может быть представлено столько различных чисел, сколько их можно записать по заданной разрядности мантиссы и порядка;

· область 6: X>+МаксВещ - ни одного значения из области нельзя представить в машинном слове (МаксВещ - максимальное по абсолютной величине число, которое можно закодировать).

Особое место занимает величина 0. Она также кодируется в форме с плавающей запятой, причем как ее порядок, так и мантисса(!) полагаются равными нулю.

              Особенности арифметических операций над числами

При выполнении арифметических операций все четыре действия арифметики корректны. Следует однако иметь в виду, что дискретный характер представления чисел в форме с плавающей запятой и разбиение числовой оси на области, в ряде из которых невозможно представить ни одного числа, приводит:

· Во-первых, к тому, что при выполнении арифметической операции теоретически возможно формирование результата, который попадает в области 2 или 5, но который нельзя закодировать в форме с плавающей запятой точно. В этом случае, результат заменяется ближайшим из множества допустимых значений с учетом правила округления (ошибка метода представления чисел, вызванная ограниченной разрядностью мантиссы).

· Во-вторых, к тому, что при выполнении арифметической операции теоретически возможно формирование результата, который попадает в область 1 или в область 6. Этот случай является критическим, поскольку результат представить нельзя принципиально. Рассматриваемая ситуация называется “Переполнение с плавающей запятой” (Overflow), а при ее возникновении происходит аппаратное прерывание работы ЭВМ и выполнение программы аварийно прекращается. Причиной этого является ограниченная разрядность порядка.

· В-третьих, к тому, что при выполнении арифметической операции теоретически возможно формирование результата, который попадает в область 3 или в область 4. Рассматриваемая ситуация называется “Потеря значимости”, а при ее возникновении результат заменяется ближайшим допустимым, как правило нулем. Выполнение программы после этого продолжается. В некоторых ЭВМ при этой ситуации вырабатывается предупредительное (информационное) сообщение. Причиной этой ситуации также является ограниченная разрядность порядка.

В заключении отметим, что при выполнении арифметических операций мантиссы чисел и их порядки обрабатываются по разным алгоритмам. При этом в операциях сложения и вычитания чисел порядки выравниваются за счет сдвига мантиссы меньшего операнда на число разрядов, равное разнице порядков операндов, а в операциях умножения и деления порядки чисел соответственно складывают или вычитают. Поскольку, как мы уже видели раньше, вычитание алгебраических чисел (т.е. с учетом их знаков) в прямом коде реализовать не просто, а порядки представляются как числа целые со знаком в прямом коде, в ряде ЭВМ при представлении числа с плавающей запятой порядок числа заменяется его характеристикой.

Характеристика числа получается из его порядка, если осуществить преобразование координат: Значение 0 на оси, изображающей характеристику, совпадает с значением -МаксПорядок:

Порядок:    

                           МаксПорядок           0                +МаксПорядок

 


Характеристика:

                                    0                                                 МаксХаракт.

При этом характеристика числа рассматривается только как положительное число, а следовательно, в нем не надо и кодировать знак. Признаком же того, какой знак имеет порядок некоторого числа, является содержимое старшего разряда характеристики: Если он равен 0 - порядок отрицательный, в противном случае - порядок положительный. В случае записи характеристики цепочкой цифр 1000..0 принимается, что порядок равен нулю.

Рассмотрим еще одну ситуацию, типичную для операции над числами в форме с плавающей запятой.

Пусть необходимо вычислить разницу чисел

          X=13,45 и Y=13,45*10**(-5) ,

при условии, что они представлены в форме с плавающей запятой при разрядности мантиссы, равной 4, и порядка, равной 2. Для простоты операцию проиллюстрируем на примере десятичной системы счисления.

Запишем числа Х и Y в форме с плавающей запятой:

                       X: 1 3 4 5 + 0 2

                       Y: 1 3 4 5 - 0 3

Как видно из этой записи, оба числа представлены в форме с плавающей запятой без искажения. Не воспроизводя логику вычитания, принятую в ЭВМ, выполним вычитание в столбик. Для этого представим оба операнда в естественной форме и так, чтобы соответствующие разряды операндов находились друг под другом :

                       X: 1 3 , 4 5

                       Y:  0 , 0 0 1 3 4 5

                          =============

                 X-Y: 1 3 , 4 4 8 6 5 5

Округлим результат, учитывая, что в нашем распоряжении для записи цифр числа имеется всего 4 разряда, и запишем его вновь в форме с плавающей запятой, в заданной разрядной сетке:

          X-Y: 1 3 4 5 + 0 0

Сравнив результат с исходными операндами увидим, что хотя оба операнда были отличны от нуля, результат и уменьшаемое полностью совпадают!

Вывод. При вычитании двух чисел большое значение имеют соотношение их величин и разрядность мантисс, используемая для их кодирования. Так что программисты могут столкнуться с нежелательными последствиями выполнения указанных действий в некоторых критических местах алгоритма. Например, если подобное вычитание выполняется в условии прекращения цикла, имеющем вид “(X-Y)>0.01”, то данное условие может никогда не выполниться, т.е. произойдет так называемое зацикливание.

 

Дополнительная литература по материалу раздела.

    1. Савельев А.Я. Прикладная теория цифровых автоматов. Учебник для втузов. М.: 1989.


АРИФМЕТИЧЕСКИЕ ОСНОВЫ ЦВМ

 

Системы счисления

 

В повседневной практике для представления чисел люди пользуются почти исключительно десятичной системой счисления. Лишь в редких случаях встречаются остатки других систем - римский счет, двенадцатиричная система (часы), шестидесятиричная (минуты).

Однако система изображения чисел, которая веками складывалась применительно к ручному труду, не позволяет получить наиболее эффективные методы выполнения вычислений. По этой причине в вычислительной технике применяются другие системы счисления и чаще всего - двоичная.

Введем несколько определений.

Cистема счисления - совокупность символов и правил для обозначения чисел.                                                                          

Разделяют системы счисления позиционные и непозиционные. Непозиционная система счисления задается перечислением изображаемых в ней значений. Позиционная система счисления характеризуется основанием и тем, что числа, как правило, представляются несколькими разрядами (являются многоразрядными), а вес любого разряда определяется его позицией в числе.

Oснование позиционной системы счисления определяет количество различных цифр (символов), допустимое в системе счисления. Это же число определяет, во сколько раз вес цифры данного разряда меньше веса цифры соседнего старшего разряда.

Так, в десятичной системе счисления, основание которой равно 10, различают 10 арабских цифр - 0, 1, 2, ..., 9. Следовательно, при ее использовании для записи числа, не превышающего девяти, достаточно одной цифры, и такое число записывается как одноразрядное. А в случае записи числа, большего девяти, оно представляется как многоразрядное. При этом вес каждого более старшего (расположенного слева от текущего) разряда в десять (основание системы счисления) раз больше текущего.

Так, например, число 359 - трехразрядное, и в нем 9 - цифра разряда единиц, 5 - цифра разряда десятков, 3 - цифра разряда сотен (в 10 раз превышает вес разряда десятков). При этом значение трехразрядного числа 359 получается суммированием трех слагаемых : 3 сотни + 5 десятков + 9 единиц.

Общее правило определения веса разряда многоразрядного числа таково:

 Если пронумеровать разряды целого числа справа налево, начиная от 0 для разряда единиц, то вес любого разряда получается возведением основания системы счисления в степень, значение которой равно номеру разряда.                                                                      

        

Так, вес самого младшего разряда целых чисел равен 1, поскольку номер разряда равен 0, а любое число, в том числе и число 10, возведенное в нулевую степень, дает в результате единицу. Вес следующего слева разряда равен 10 в степени 1, т.е. равен десяти, и т.д.

Это же правило справедливо и для записи дробных чисел. При этом разрядам справа от разряда единиц, имеющего номер 0, присваиваются отрицательные значения: -1, -2, и т.д., а их веса получаются также при возведении основания 10 в соответствующую степень. Так, например, вес третьего разряда в дробной части числа 42,9724 будет равен 10 в степени (-3), т.е. равен одной тысячной.

Указанное правило можно проиллюстрировать следующим образом:

Число 7 5 0 6 8 , 2 5 9
Номер разряда 4 3 2 1 0 -1 -2 -3
Вес разряда 10000 1000 100 10 1 0,1 0,01 0,001

Как видно из примера, в позиционной системе счисления достаточно знать значение основания системы счисления, символы, изображающие отдельные цифры, и указанное правило, чтобы представить любое число.

В вычислительной технике широко применяют двоичную, восьмеричную и шестнадцатиричную систему счисления.

Двоичная система счисления имеет основание 2, и, следовательно, две разных цифры - 0 и 1; восьмеричная - восемь разных цифр - 0, 1, 2, 3, 4, 5, 6, 7, а шестнадцатиричная - шестнадцать цифр - десять арабских цифр от 0 до 9 и еще шесть символов -

    А (цифра, изображающая десять),             D (цифра тринадцать),

    В (цифра одиннадцать),               E (цифра четырнадцать),

    С (цифра двенадцать),             F (цифра пятнадцать).

Проще всего сопоставить запись одних и тех же чисел в этих системах счисления можно с использованием таблицы 1, приведенной на следующей странице.

Мы уже говорили о том, что современные цифровые ЭВМ все используют в качестве основной двоичную систему счисления. К ее достоинствам относится:

· простота выполнения арифметических и логических операций, что влечет за собой простоту устройств, реализующих эти операции;

· возможность использования аппарата алгебры логики (булевой алгебры) для анализа и синтеза операционных устройств ЭВМ.

К неудобствам двоичной системы счисления относится необходимость перевода чисел из десятичной в двоичную и наоборот, а также то, что запись числа в двоичной системе громоздка (требует большего числа разрядов, чем привычная для человека десятичная). По этой и ряду других причин, кроме двоичной применяются восьмеричная и шестнадцатиричная системы счисления.

                                                                                Таблица 1.1

 

С и с т е м а с ч и с л е н и я

10 2 8 16
0       0 0 0
1       1 1 1
2    0 1 2 2
3    1 1 3 3
4 1 0 0 4 4
5 1 0 1 5 5
6 1 1 0 6 6
7 1 1 1 7 7
8 1 0 0 0 1 0 8
9 1 0 0 1 1 1 9
10 1 0 1 0 1 2 A
11 1 0 1 1 1 3 B
12 1 1 0 0 1 4 C
13 1 1 0 1 1 5 D
14 1 1 1 0 1 6 E
15 1 1 1 1 1 7 F
16 1 0 0 0 0 2 0 1 0

 

Совместное использование указанных систем обусловлено двумя причинами:

· в восьмеричной и шестнадцатиричной системах любое число записывается более компактно, нежели двоичное;

· простотой преобразования из двоичной в восьмеричную (шестнадцатирич-ную) систему счисления и наоборот.

Приведем правила перевода чисел из двоичной системы в восьмеричную (шестнадцатиричную) и наоборот.

П1 .Правило перевода “8с/с -> 2c/c”

 

При переводе многоразрядного числа каждую цифру исходного восьмеричного числа представить всегда точно тремя двоичными цифрами, взятыми из приведенной выше таблицы. При этом, если для записи соответствующей восьмеричной цифры в виде двоичной требуется менее трех двоичных цифр, двоичный эквивалент дополняется слева нулями (незначащие нули не исказят значения числа). Таким образом, например, при записи четырехразрядного восьмеричного числа должно получиться двенадцатиразрядное двоичное. После окончания такого преобразования можно отбросить старшие для всего числа незначащие двоичные цифры.

Отметим, что три цифры принято называть триадой. Поэтому можно сказать, что при описываемом переводе каждая восьмеричная цифра заменяется соответствующей ей триадой двоичных цифр.

Если исходное число дробное, т.е. имеет целую и дробную часть, то в двоичном числе запятая ставится между триадами, представляющими соответствующие цифры исходного числа.

Пример.

Преобразуем восьмеричное число 371,62.

Для этого запишем для каждой цифры соответствующую триаду:

3 --> 011

7 --> 111

1 --> 001

6 --> 110

2 --> 010

Теперь можно записать число в двоичной форме (для наглядности между триадами поместим пробелы):

              371,62 -> 011 111 001 , 110 010

И, наконец, запишем полученное двоичное число так, как это принято в математике, без незначащих нулей, а также отбросив правые нули в дробной части числа:

371,62 -> 11111001,11001

П2. Правило перевода “2с/с -> 8c/c”

 

При переводе многоразрядного двоичного числа в восьмеричную форму поступают следующим образом: Исходное число разбивают на триады. При этом для целой части числа разбиение проводят от местонахождения запятой влево, а для дробной части - от этого же места вправо. Затем самая левая группа при необходимости дополняется незначащими нулями до образования триады, а самая правая группа только в дробной части дополняется нулями справа также до образования полной триады. После этого каждая триада заменяется соответствующей восьмеричной цифрой. Местоположение запятой сохраняется по тем же правилам, что и в правиле П1.

Пример.

Представить двоичное число 1101100,01111101 в форме восьмеричного.

Разобьем исходное число на группы по три цифры, приняв в качестве точки отсчета местоположение запятой (для наглядности между триадами поместим пробелы):

              1 101 100 , 011 111 01

Теперь дополним до трех цифр нулями самую левую группу слева и самую правую группу справа:

              001 101 100 , 011 111 010

И, наконец, заменим каждую триаду соответствующей восьмеричной цифрой:

          001 101 100 , 011 111 100 --> 154,372

 

П3. Правило перевода “16с/с -> 2c/c”

 

При переводе многоразрядного шестнадцатиричного числа в двоичную форму каждую цифру исходного числа заменяют группой точно из четырех двоичных цифр (заменяют тетрадой двоичных цифр). Местоположение запятой сохраняется по тем же правилам, что и в правиле П1. В окончательной записи можно отбросить самые левые (незначащие) нули и самые правые нули дробной части.

Пример. Преобразовать шестнадцатиричное число “6C,7D”  в двоичную форму.

Для этого запишем для каждой цифры соответствующую тетраду:

          6 --> 0110

          C --> 1100

          7 --> 0111

          D --> 1101

Теперь можно записать число в двоичной форме (для наглядности между тетрадами поместим пробелы):

    6C,7D -> 0110 1100 , 0111 1101

И, наконец, запишем полученное двоичное число так, как это принято в математике, без незначащих нулей:

    6C,7D -> 1101100,01111101

П4. Правило перевода “2с/с -> 16c/c”

 

При переводе многоразрядного двоичного числа в шестнадцатиричную форму поступают следующим образом. Исходное число разбивают на тетрады. При этом для целой части числа разбиение проводят от местонахождения запятой влево, а для дробной части от этого же места вправо. Затем самая левая группа при необходимости дополняется незначащими нулями до образования тетрады, а самая правая группа только в дробной части дополняется нулями справа также до образования полной тетрады. После этого каждая тетрада заменяется соответствующей шестнадцатиричной цифрой. Местоположение запятой сохраняется по тем же правилам, что и в правиле П1.

Пример. Представить двоичное число 1101100,01111101 в форме шест-надцатиричного.

Разобьем исходное число на группы по четыре цифры, приняв в качестве точки отсчета местоположение запятой (для наглядности между тетрадами поместим пробелы):

              110 1100 , 0111 1101

Теперь дополним до четырех цифр нулями слева самую левую группу:

              0110 1100 , 0111 1101

И, наконец, заменим каждую тетраду соответствующей шестнадцатиричной цифрой:

          0110 1100 , 0111 1101 -> 6С,7D.

Шестнадцатиричная и восьмеричная системы счисления используются для более компактной и удобной записи двоичных чисел.

Так, известность шестнадцатиричной системе принесло то, что с ее использованием удобно представлять программы в кодах большинства современных ЭВМ.

Перевод чисел из одной системы счисления

В другую

 

Поскольку в практической деятельности люди привыкли оперировать десятичной системой счисления, а в ЭВМ числа представляются в двоичной, необходимо научиться преобразовывать числа из одной системы счисления в другую. Рассмотренные выше правила перевода из двоичной системы счисления в восьмеричную и шестнадцатиричную и наоборот носят частный характер и не могут быть распространены на другие системы. Здесь же мы рассмотрим общие правила перевода, справедливые для любой пары систем счисления, хотя и более громоздкие и трудоемкие по сравнению с рассмотренными выше.

Правила перевода целых и дробных чисел не совпадают, поэтому приведем три правила перевода чисел из системы счисления с основанием R в систему счисления с основанием Q.

Дата: 2019-12-10, просмотров: 253.