Табличные методы минимизации булевых функций
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В практике проектирования дискретных вычислительных устройств для минимизации булевых функций «вручную» используют специального вида таблицы, представляющие собой разложение единичного n-мерного куба на плоскости, сохраняющее отношение смежности вершин. Такие таблицы известны для nÎ{3,4-18}. Очевидно, с точки зрения здравого смысла таблицы для больших значений n (скажем, n>8) использовать не целесообразно (лучше написать программу). Для n-местной булевой функции такая таблица должна содержать 2n клеток, в каждую из которых записывается значение функции на том наборе значений переменных, номер которого совпадает с номером клетки. Нумерация клеток сохраняет отношение смежности вершин, так что любые две рядом расположенные клетки являются соседними и могут склеиваться друг с другом. В таблицах также возможно склеивание клеток, расположенных рядом по вертикали и по горизонтали, а также симметрично относительно некоторых осей симметрии таблицы. В склеивании могут участвовать 2k клеток, в которых k каких-либо переменных принимают все возможные наборы значений. Эти k переменных являются свободными переменными интервала, который содержит k свободных и n-k связанных переменных. Интервалу соответствует множество, содержащее 2k вершин единичного n-мерного куба {0,1}n

Процесс минимизации в классе дизъюнктивных нормальных форм (ДНФ) сводится к визуальному отысканию максимальных интервалов функции, покрывающих наибольшее число вершин единичного n-мерного куба. При этом отпадает необходимость в использовании импликантных таблиц.

Диаграммы Вейча

При небольшом числе переменных (n=3,4) для минимизации булевых функций используют диаграммы Вейча.

Для функции трех переменных нумерация клеток диаграммы Вейча приведена на Рис. 1.

   

x1

 

 
       

 

 
x2   6 7

3

2
    4 5

1

0
       

 

 
     

x3

 

             

Рисунок 1 Диаграмма Вейча для 3-х переменных

Диаграмма содержит 23=8 клеток. В диаграмме указаны группы по 23-1=4 клеток, в которых каждая из переменных принимает значение 1.

Определим максимальные интервалы и соответствующую МДНФ для функции трех переменных, заданной вектором af=(0111 1011).Изображение этой функции на диаграмме Вейча показано на рис.4 в предположении, что нумерация переменных в последовательности, задающей номер клетки, производится слева направо.

Из рис.4 видно, что множество единиц данной функции покрывается тремя максимальными интервалами, которым соответствует МДНФ = x2 Ú x1`x3 Ú`x1x3.

Х1
 

 

         
 


х2
1

1 1 1
1 0 1 0

Рисунок 2 Пример минимизации функции 3-х переменных

 

 

Обозначенные на рис. 2 максимальные интервалы покрывают множество N1, образуя неприводимое покрытие, которому соответствует МДНФ

f (x1,x2,x3)=x1`x2 Ú x2 Ú`x1x3

Для четырехместной булевой функции таблица содержит 24=16 строк. Соответственно, диаграмма Вейча такой функции содержит 16 клеток, расположение которых показано на Рис. 3, 4. Каждой клетке сопоставлена одна из вершин единичного 4-мерного куба, описанная кортежем . Двоичные коды кортежей, соответствующие нумерации клеток, приведенной на Рис. 3, представлены на Рис. 4. Из последнего рисунка видно, что каждая переменная принимает значение 1 в 8 клетках таблицы, обозначенных соответствующим указателем.

12 13 9 8
14 15 11 10
6 7 3 2
4 5 1 0

x22
Рисунок 3 Нумерация клеток при n=4

 

     


1100 1101 1001 1000
1110 1111 1011
x3
1010

0110 0111 0011 0010
0100 0101 0001 0000

x4
     
 
x1
Рисунок 4 Единичные вхождения переменных при n=4

 

 


Примеры минимизации 4-местных булевых функций, заданных векторами  a(f)=(1010101010101010) и a(f)=(1001100110011001) приведены на Рис. 5.

Рисунок 5 Пример определения МДНФ

При дальнейшем увеличении местности булевых функций их минимизация с использованием диаграмм Вейча становится затруднительной из-за громоздкости таблицы и уменьшения ее наглядности. Поэтому при n>4 используют метод симметричных таблиц.




Дата: 2019-03-05, просмотров: 225.