Волновые механические передачи
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма. Впервые такая передача была запатентована в США инженером Массером. [3]

Волновые зубчатые передачи (рис. 2.14) являются разновидностью планетарных передач, у которых одно из колес гибкое.

Волновая передача включает в себя жесткое зубчатое колесо b с внутренними зубьями и вращающееся гибкое колесо g c наружными зубьями. Гибкое колесо входит в зацепление с жестким в двух зонах с помощью генератора волн (например, водила h с двумя роликами), который соединяют с корпусом передачи b.

Рис. 2.14. Волновая зубчатая передача

Гибкое зубчатое колесо представляет собой гибкий цилиндр, один конец которого соединен с валом и сохраняет цилиндрическую форму, а другой конец имеет зубья. Генератор волн служит для образования и движения волны деформации на гибком зубчатом колесе.

Генераторы волн бывают механические, пневматические, гидравлические, электромагнитные. Механические генераторы могут быть двухроликовыми, четырехроликовыми, дисковыми, кольцевыми и кулачковыми. Генератор волн может располагаться внутри гибкого колеса или вне его. Число волн – любое.

К основным достоинствам волновых передач по сравнению с зубчатыми передачами следует отнести:

- их меньшие массу и габариты;

- кинематическую точность;

- высокую демпфирующую способность;

- обеспечение больших передаточных отношений в одной ступени (50…300);

- возможность передачи движения в герметизированное пространство без применения уплотнений.

Недостатки:

- сложность конструкции;

- ограничение скорости вращения ведущего вала генератора волн при больших диаметрах колес;

- повышенные потери мощности на трение и на деформацию гибкого колеса (КПД составляет 0,7-0,85 при U = 80-250).

Волновые передачи применяют в приводах для передачи движения в герметизированное пространство в химической, атомной и космической технике; в силовых и кинематических приводах общего назначения с большим передаточным отношением; в исполнительных малоинерционных быстродействующих механизмах систем автоматического регулирования и управления; в механизмах отсчетных устройств повышенной кинематической точности.

 

Фрикционные передачи

Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами.

Для нормальной работы передачи необходимо, чтобы сила трения Fтр была больше окружной силы Ft, определяющей заданный вращающий момент:

Ft < Fтр. (2.42)

Сила трения

Fтр = Fn f,

где Fn – сила прижатия катков;

f – коэффициент трения.

Нарушение условия (2.42) приводит к буксованию и быстрому износу катков.

В зависимости от назначения фрикционные передачи можно разделить на две основные группы: передачи с нерегулируемым передаточным отношением (рис. 2.15, а); регулируемые передачи, называемые вариаторами, позволяющими плавно (бесступенчато) изменять передаточное отношение.

Рис. 2.15. Схемы фрикционных передач

Различают передачи с параллельными и пересекающимися осями валов; с цилиндрической, конической, шаровой или торовой поверхностью рабочих катков; с постоянным или автоматически регулируемым прижатием катков, с промежуточным фрикционным элементом или без него и т.д.

Схема простейшей нерегулируемой передачи изображена на рис. 2.15, а. Она состоит из двух катков с гладкой цилиндрической поверхностью, закрепленных на параллельных валах.

У лобового вариатора (рис. 2.15, б) ведущий каток А может перемещаться вдоль своей оси. При этом передаточное отношение плавно изменяется в соответствии с изменением рабочего диаметра d2 ведомого диска Б. При переходе катка А на левую сторону направление вращения диска Б изменяется – вариатор обладает свойством реверсивности.

Область применения. Фрикционные передачи с постоянным передаточным отношением применяют сравнительно редко. Их область ограничивается преимущественно кинематическими цепями приборов, от которых требуется плавность движения, бесшумность работы, безударное включение на ходу и т.п.

Фрикционные вариаторы применяют достаточно широко для обеспечения бесступенчатого регулирования скорости в станкостроении, текстильных, бумагоделательных и других машинах и приборах. В авиастроении фрикционные передачи не применяются. Диапазон передаваемых мощностей обычно находится в пределах до 10 кВт, так как при больших мощностях трудно обеспечить необходимое усилие прижатия катков.

Способы прижатия катков. Существует два вида прижатия катков: с постоянной силой, которую определяют по максимальной нагрузке передачи; с регулируемой силой, которая автоматически изменяется с изменением нагрузки. Лучшие показатели получают при саморегулируемом прижатии.

Способ прижатия катков оказывает большое влияние на качественные характеристики передачи: КПД, постоянство передаточного отношения, контактную прочность и износ катков.

Скольжение в передаче. Различают три вида скольжения: буксование, упругое скольжение и геометрическое скольжение.

Буксование наступает при перегрузках элементов передачи. При этом ведомый каток останавливается, а ведущий скользит по нему, что приводит к интенсивному местному изнашиванию или задиру на ведомом катке.

Упругое скольжение характерно для нормально работающей передачи. Участки поверхности ведущего катка подходят к площадке контакта сжатыми, а отходят растянутыми. На ведомом катке наблюдается обратная картина. Касание сжатых и растянутых волокон катков приводит к их упругому скольжению, что вызывает отставание ведомого катка от ведущего.

Геометрическое скольжение связано с тем, что окружные скорости вращения ведущего и ведомого катков на площадке их контакта различны. Например, в лобовом вариаторе (см. рис. 2.15, б) окружная скорость V2 меняется с изменением R, а скорость V1 на этой площадке постоянна. Геометрическое скольжение является основной причиной изнашивания рабочих поверхностей элементов фрикционных передач.

Ременные передачи

Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.

В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную (рис. 2.16, а – в) передачи.

Рис. 2.16. Ременные передачи

Сравнивая ременную передачу с зубчатой можно отметить следующие преимущества:

- возможность передачи движения на значительное расстояние (до 15 м и более);

- плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях;

- способность выдерживать перегрузки (до 300 %) благодаря увеличению скольжения ремня;

- невысокая стоимость;

- простота обслуживания и ремонта.

Основными недостатками ременной передачи являются:

- непостоянство передаточного отношения из-за скольжения ремня на шкивах;

- значительные габаритные размеры при больших мощностях (для одинаковых условий диаметры шкивов примерно в 5 раз больше диаметров зубчатых колес);

- большое давление на шкивы в результате натяжения ремня;

- низкая долговечность ремней (от 1000 до 5000 ч).

Ременные передачи применяют преимущественно в тех случаях, когда по условиям конструкции валы расположены на значительных расстояниях. Мощность современных передач не превышает 50 кВт.

В многоступенчатых приводах ременную передачу применяют обычно в качестве быстроходной ступени, устанавливая ведущий шкив на валу двигателя. В таком случае габариты и масса передачи будут наименьшими.

Критерии работоспособности и расчета. Опыт эксплуатации передач в различных машинах и механизмах показал, что работоспособность передач ограничивается преимущественно тяговой способностью, определяемой силой трения между ремнем и шкивом, долговечностью ремня, которая в условиях нормальной эксплуатации ограничивается разрушением ремня от усталости.

Цепные передачи

Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью (рис. 2.19, а) и зубчатой цепью (рис. 2.19, б). Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

Преимуществами цепных передач являются:

- отсутствие проскальзывания;

- достаточная быстроходность (20-30 м/с);

- сравнительно большое передаточное число (7 и более);

- высокий КПД;

- возможность передачи движения от одной цепи нескольким звездочкам;

- небольшая нагрузка на валы, т.к. цепная передача не нуждается в предварительном натяжении цепи необходимом для ременной передачи.

 

 

Недостатками цепных передач являются:

- вытяжка цепей вследствие износа шарниров;

- более высокая стоимость передачи по сравнению с ременной;

- необходимость регулярной смазки;

- значительный шум.

По назначению цепи подразделяют на приводные, используемые в приводах машин; тяговые, применяемые в качестве тягового органа в конвейерах, и грузовые, используемые в грузоподъемных машинах для подъема грузов.

Цепные передачи применяются, например, для управления рулем направления самолета (рис. 2.20), для привода механизма отклонения триммера руля высоты.

Звездочки. По конструкции звездочки похожи на зубчатые колеса. Делительная окружность звездочки проходит через центры шарниров цепи. Профилирование их зубьев выполняют по стандарту. Ширина b зубчатого венца звездочки принимается несколько меньшей расстояния между внутренними пластинками. Звездочки больших размеров выполняют составными. [4]

Передача винт-гайка

Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.

В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.

К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.

Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

Рис. 2.22. Передачи винт-гайка

В винтовой передаче вращение винта 1 вызывает поступательное перемещение гайки 2 (рис. 2.22, а), а вращение гайки 2 приводит к поступательному перемещению винта 1 (рис. 2.22, б).

Передаточное отношение. В винтовых механизмах винт или гайка приводится в движение с помощью маховика, шестерни и др. Передаточное

ное отношение для этих передач можно условно выразить соотношением окружного перемещения маховика Sм к перемещению гайки (винта) Sr:

i = Sм / Sr = π dм / p1, (2.65)

где dм – диаметр маховика (шестерни и т.п.);

р1 – ход винта.

Зависимость между окружной силой Ft на маховике и осевой силой Fa на гайке запишем в виде:

Ft = Fa i η, (2.66)

где η – КПД винтовой пары.

Рычажные механизмы

Механизмы, в которые входят жесткие звенья, соединенные между собой кинематическими парами пятого класса, называют рычажными механизмами.

В кинематических парах таких механизмов давление и интенсивность изнашивания звеньев меньше, чем в высших кинематических парах.

Среди разнообразных рычажных механизмов наиболее распространенными являются плоские четырехзвенные механизмы. Они могут иметь четыре шарнира (шарнирные четырехзвенники), три шарнира и одну поступательную пару или два шарнира и две поступательные пары. Их используют для воспроизведения заданной траектории выходных звеньев механизмов, преобразования движения, передачи движения с переменным передаточным отношением.

Под передаточным отношением рычажного механизма понимают отношение угловых скоростей основных звеньев, если они совершают вращательные движения, или отношение линейных скоростей центра пальца кривошипа и выходного звена, если оно совершает поступательное движение.

Кривошипно-ползунный механизм. Этот механизм имеет самое широкое применение в машиностроении и используется в двигателях внутреннего сгорания, станках, компрессорах, поршневых насосах, прессах, а также при механизации и автоматизации как основных, так и вспомогательных операций технологического процесса.

Из рис. 2.24 видно, что

(2.69)

Рис. 2.24. Кривошипно-ползунный механизм

Кулачковые механизмы

Кулачковые механизмы (рис. 2.26) по широте применения уступают только зубчатым передачам. Их используют в станках и прессах, двигателях внутреннего сгорания, машинах текстильной, пищевой и полиграфической промышленности. В этих машинах они выполняют функции подвода и отвода инструмента, подачи и зажима материала в станках, выталкивания, поворота, перемещения изделий и др.

Кулачковые механизмы имеют ряд преимуществ:

- возможность воспроизведения почти любого закона движения ведомого звена;

- простота согласования работы нескольких механизмов в машинах-автоматах;

- надежность в работе и компактность.

К недостаткам этих механизмов следует отнести относительно быстрое изнашивание соприкасающихся поверхностей, которое обусловлено ускоренным движением толкателя, отсутствием смазки, а также наличием вибрации, которая возрастает с увеличением частоты вращения кулачка.

Классификация механизмов. По характеру движения механизмы подразделяют на пространственные и плоские. В зависимости от вида движения кулачка механизмы подразделяют на поступательные (рис. 2.26, г, д), вращательные (рис. 2.26, а, б, в) и качающиеся. По взаимному расположению кулачка и толкателя механизмы называют центральными и дезаксиальными (нецентральными). По типу замыкания высшей кинематической пары их подразделяют на пары с кинематическим и силовым замыканием.

Рис. 2.26. Кулачковые механизмы:

а, б, в – дисковые; г, д – плоские с поступательным перемещением кулачка; е – гиперболоидные

Силовое замыкание происходит под действием пружины, силы тяжести груза либо реализуется гидравлическим или пневматическим способом. Оно характерно преимущественно для механизмов, работающих с небольшими скоростями звеньев.

 

Вопрос 2

Зубчатая передача

Из зубчатых передач наиболее распространены передачи между параллельными валами. Они осуществляются цилиндрическими зубчатыми колесами (шестернями) с прямыми (рис. 4, а) и косыми (рис. 4, б) зубьями. Колеса с косыми зубьями отличаются более спокойной и бесшумной работой по сравнению с прямозубыми колесами.

Передача с внешним зацеплением (рис. 4, а) применяется чаще, чем передача с внутренним зацеплением (рис. 4, в). При внешнем зацеплении пара зубчатых колес вращается в противоположном направлении, а при внутреннем зацеплении — в одном направлении.

Широко применяются в токарно-винторезных станках передвижные блоки колес (так называют несколько зубчатых колес, изготовленных как одно целое, рис. 4 г). При перемещении блока А по шпонке или шлицам вала / отдельные колеса блока могут входить в зацепление с соответствующими колесами, неподвижно сидящими на валу II.

В передачах с пересекающимися осями валов применяются конические зубчатые колеса с прямыми (рис. 4, д) и косыми (рис. 4, е) зубьями.

Если через z1 и n2 обозначить соответственно число зубьев ведущего зубчатого колеса и число его оборотов, а через z2 и n2 — число зубьев и число оборотов ведомого зубчатого колеса, то число оборотов ведомого зубчатого колеса можно вычислить по формуле

(2)

Таким образом, определение числа оборотов ведомого зубчатого колеса производится по формуле, подобной формуле (1) для определения числа оборотов ведомого шкива с подстановкой числа зубьев, колес вместо диаметров шкивов.

Для определения числа оборотов зубчатой передачи целесообразнее пользоваться передаточным отношением. Передаточным отношением i называют отношение чисел зубьев ведущего и ведомого колес или отношение чисел оборотов ведомого колеса к числу оборотов ведущего:

Из формулы (2) видно, что число оборотов ведомого зубчатого колеса так относится к числу оборотов ведущего, как число зубьев ведущего колеса относится к числу зубьев ведомого.

 

Вопрос 3

Ременная передача

Ременная передача является наиболее распространенним видом передачи гибкой связью в металлорежущих станках.

Ременная передача в токарных станках применяется главным образом для передачи вращения приводному шкиву от электродвигателя.

На рис. 2, а показана ременная передача, состоящая из двух шкивов А и Б, сидящих на параллельных валах и соединенных бесконечным ремнем. Благодаря натяжению ремня движение от шкива А передается шкиву Б. Шкив А, передающий движение, называется ведущим, а шкив Б, воспринимающий движение от шкива А и передающий его своему валу, называется ведомым.

Допустим, что шкив А имеет диаметр D1 = 250 мм, а шкив Б — диаметр D2 — 500 мм.

Если ведущий шкив А диаметром D1 = 250 мм сделает один полный оборот, то ведомый шкив Б диаметром D2 — 500 мм сделает пол-оборота, так как диаметр шкива А вдвое меньше диаметра шкива Б.

Число оборотов в технике принято обозначать буквой n (эн). Следовательно, если ведущий шкив А сделает в данном случае n оборотов в минуту, то ведомый шкив Б сделает оборотов.

Число оборотов ведомого шкива можно вычислить по формуле

(1)

где D1 — диаметр ведущего шкива в мм;
D2 — диаметр ведомого шкива в мм;
n1 — число оборотов ведущего шкива в минуту;
n2 — число оборотов ведомого шкива в минуту.

Пример 1. Сколько оборотов в минуту сделает ведомый шкив, если диаметр ведущего шкива равен 200 мм, причем этот шкив делает 450 об/мин, а диаметр ведомого шкива равен 300 мм.
Решение.

откуда


В действительности число оборотов ведомого шкива вследствие проскальзывания ремня получается несколько меньше подсчитанного; вследствие небольшой разницы (около 2%) мы в своих расчетах не будем учитывать проскальзывание.

Следует различать передачу плоскими и клиновидными ремнями.

Плоские ремни изготовляют из кожи, хлопчатобумажной пряжи и прорезиненной ткани. Для получения бесконечной ленты ремни сшивают посредством сыромятных узких ремешков, склеивают или соединяют металлическими скрепками.

Следует указать, что ремень тем больше проскальзывает, чем слабее его натяжение и чем меньшую часть шкива по окружности он охватывает. Ременная передача работает тем лучше, чем больше охватываемая ремнем часть шкива или чем больше угол охвата.

Клиновидные ремни изготовляют из прорезиненной ткани. Они имеют трапецеидальный профиль. Клиновидные ремни натягивают по нескольку в ряд, укладывая их на шкивах в канавки соответствующего профиля (см. рис. 2, б). Проскальзывание таких ремней во время работы незначительно (это обеспечивается хорошим контактом ремней в канавках), и работают они более плавно. В силу этих преимуществ они находят все большее применение в металлорежущих станках.

В токарных станках в связи с малыми межосевыми расстояниями, как правило, передачи как клиновидными, так и плоскими ремнями применяются только с натяжным устройством.

На рис. 3 показаны различные способы натяжения ремней. Наиболее распространенным способом является натяжение ремня перемещением электродвигателя по салазкам (рис. 3, а). На рис. 3, б показана схема регулирования натяжения ремня поворотом электродвигателя вокруг оси О; поворот осуществляется с помощью домкрата A.

Требуемого натяжения ремня и увеличения угла охвата можно добиться, применяя натяжной ролик, как показано на рис. 3, в. Ролик С прижимается к движущемуся ремню с помощью рычага А при поворачивании его вокруг оси О; натяжение ремня регулируется домкратом В.

 

Вопрос 4






Червячная передача

Червячная передача применяется для передачи вращательного движения между двумя валами, расположенными под углом 90° и не пересекающимися между собой (рис. 5). Передача состоит из червяка 1 и червячного колеса 2. Ведущим обычно является червяк, а ведомым — червячное колесо. Червяк представляет собой винт с трапецеидальным профилем. Червяки соответственно числу ходов разделяются на однозаходные, двухзаходные и трехзаходные. Реже встречаются червяки с числом заходов более трех.

Если сообщить червяку один оборот, то червячное колесо повернется на К зубьев, где К — число заходов червяка. Следовательно, за один оборот червяка червячное колесо повернется на один зуб в том случае, если червяк однозаход-ный, на два зуба, если червяк двухзаходный, и на три зуба при трехзаходном червяке. Таким образом, передаточное отношение червячной передачи можно написать так:

где К — число заходов червяка, а z — число зубьев червячного колеса.

Пример 2. Сколько оборотов в минуту сделает червячное колесо с 50 зубьями, если червяк однозаходный и делает 500 об/мин?
Решение. Обозначим число оборотов червяка через nl, червячного колеса через п2, число зубьев червячного колеса через z, число заходов червяка через K.
Тогда передаточное отношение по формуле (3)

а число оборотов червячного колеса

Червячная передача отличается малым передаточным отношением. В токарных станках такие передачи применяют преимущественно в механизмах фартука. Там же наряду с обычной червячной передачей находят применение так называемые падающие червяки (например в станке 1А62, см. рис. 37), которые, помимо своего назначения, служат для автоматического выключения движения суппорта (продольного и поперечного) при внезапной перегрузке станка.



Реечная передача

В токарных станках часто используется реечная передача (рис. 6), состоящая из зубчатого колеса и рейки. Реечная передача служит для преобразования вращательного движения в поступательное.

На рис. 6 видно, что если по неподвижной рейке катить зубчатое колесо, вращая его в направлении, указанном стрелкой 1, то ось его будет перемещаться по направлению стрелки 3. Если же вращать колесо с неподвижной осью в направлении стрелки 1, то рейка будет перемещаться в направлении стрелки 2. С поворотом реечного колеса на один оборот, т. е. на z зубьев, рейка также переместится иа z зубьев; если же колесо сделает п оборотов, то при шаге рейки t мм рейка пройдет путь:

Наиболее распространенной схемой реечной передачи в токарных станках является первая схема, когда вращательное движение колеса преобразуется в его поступательное перемещение по рейке. Подобная передача используется для механического перемещения каретки суппорта (см. рис. 36).

Вследствие малого трения и сравнительно большого перемещения за один оборот реечного колеса реечная передача удобна также, и для быстрых ручных перемещений каретки суппорта.

Тема 3,2

Вопрос 1

Когда на чертежах не требуется показывать конструкцию изделия и отдельных деталей, а достаточно показать лишь принцип работы, передачу движения (кинематику машины или механизма), пользуются схемами.

Схемой называют конструкторский документ, на котором составные части изделия, их взаимное расположение и связи между ними показаны в виде условных обозначений.

Схема, как и чертеж, – графическое изображение. Разница заключается в том, что на схемах детали изображаются с помощью условных графических обозначений. Эти обозначения представляют собой значительно упрощенные изображения, напоминающие детали лишь в общих чертах. Кроме того, на схемах изображаются не все детали, из которых состоит изделие. Показывают лишь те элементы, которые участвуют в передаче движения жидкости, газа и т.п.

Электрической схеме называется графическое изображение электрических машин, аппаратов и соединяющих их цепей с указанием предусмотренного взаимодействия между ними. Электрические схемы по ГОСТ 2.701-76 и 2.702-75 могут быть структурные, функциональные, принципиальные (полные), соединений, подключения, общие и расположение. Структурные схемы используются для общего ознакомления с электропередачей тепловоза. На них изображают основные электрические машины и аппараты в виде условных графических обозначений или прямоугольников с указанием основных связей между ними. Функциональные схемы представляют для объяснения принципов работы электрических машин, аппаратов, отдельных систем. Отдельные машины, аппараты изображаются в виде условных графических обозначений или прямоугольников. Принципиальные (полные) схемы тепловозов используются для изучения принципов работы, при регулировании, контроле и ремонте. На них изображают все элементы схемы и связи между ними. Отдельные элементы аппаратов включаются в соответствующие цепи схемы и обозначаются одинаковыми буквами или цифрами. Схемы соединений (монтажные) выполняются для соединений между высоковольтными камерами, пультами управления и др. Схемы подключения показывают внешние подключения электрических машин и аппаратов. Схемы общие изображают все устройства и их соединения. Схемы расположения изображают расположение всех устройств с учетом их фактической установки на тепловозе.

Источник: http://5fan.ru/wievjob.php?id=78390

Вопрос 2

Кинематические схемы

Условные обозначения для кинематических схем установлены ГОСТ 2.770–68, наиболее часто встречающиеся из них приведены в табл. 10.1.

Таблица 10.1

Дата: 2019-02-02, просмотров: 409.