IV. СИСТЕМА ЭВРИСТИЧЕСКИХ МЕТОДОВ Г.Д. БАЛКА
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Система эвристических приемов Г.Д. Балка имеет в своей основе некоторые методы, рассмотренные выше, такие как введение вспомогательных неизвестных, преобразование задачи в равносильную ей, разбиение задачи на подзадачи (см.[2], стр. 58 – 59). Однако, помимо того, важными для эвристических рассуждений автор считает методы индукции, аналогии, метод рассмотрения предельных случаев, “соображения непрерывности”, метод малых изменений.

Именно эти методы М.Б Балк и Г.Д. Балк практиковали в своей работе в школе еще в 1969 году, считая их базовыми в процессе поиска решения нестандартной задачи. Эти же методы, не включенные в систему эвристических приемов Л.М. Фридмана, подробно будут рассмотрены на примерах решения нестандартных задач в данном пункте.

 

Аналогия

 

В математике зачастую имеют место такие случаи, когда аналогичные, сходные условия приводят к сходным результатам. Чтобы таким положением было возможно воспользоваться, необходимо научиться (хотя бы на небольшом числе упражнений) формулировать математические предложения по аналогии. Но также нельзя забывать, что сравнение не является доказательством и предложения, сформулированные по аналогии, могут оказаться ошибочными.

И хотя предложения, сформулированные по аналогии, могут оказаться ошибочными, все же часто оказывается, что такие предложения истинны.

Но не только для формулировки новых правдоподобных математических фактов полезно привлекать аналогию, поскольку еще более ценно научиться сознательно привлекать аналогию при поиске способа решения трудной задачи.

В основном метод аналогии применим при решении геометрических задач (в том числе задач стереометрии по аналогии с планиметрическими).

Рассмотрим пример геометрической задачи, когда найти способ решения позволяет метод аналогии.

Задача 12. Зная стороны треугольника ABC, вычислить радиус r  вневписанной окружности, касающейся стороны BC и продолжений сторон AB и AC.

Данная задача не является стандартной, поэтому сразу трудно определить алгоритм ее решения. Но возможно, что из рассмотрения вспомогательной задачи, сформулированной для исходной по аналогии, нетрудно будет найти способ решения исходной. Аналогичная ей может выглядеть следующим образом:

Зная стороны a, b, c треугольника ABC, вычислить радиус r вписанной окружности.

 


Решение. 1. Соединим центр О вписанной окружности с вершинами треугольника ABC.

 

2. S = S + S + S (1)

3. Обозначим площадь треугольника ABC через S, тогда по формуле Герона

 

S = .

4. S  = cr, S  = br, S  = ar.

 

5. Из (1) следует, что S = ( c+ b+ a )r = pr, откуда r = , или A

r = .BC

 


Решение задачи К+1. 1. Соединим центр О вневписанной окружности с вершинами ABC.

 

2. S  = S  + S  – S  (1).

 

3. Обозначим площадь треугольника ABC через S, тогда по формуле Герона

 

S = .

4. S  = , S  = , S  = .

 

5. Из (1) первого следует, что S = ( c+ b - a )r  =( p- a) r , откуда


r =  или r = . Задача решена.

 

На данном примере наглядно показан прием аналогии решения задач, которым можно пользоваться, соблюдая следующие этапы:

a) подбор задачи, аналогичной исходной, т.е. такой, что у нее и исходной задачи сходные условия и сходные заключения. Вспомогательная задача конечно должна быть проще исходной или ее решение должно быть известно;

б) после решения вспомогательной задачи проводятся аналогичные рассуждения для решения исходной задачи.

 

4.2 Индукция

 




Индукция один из самых важных эвристических методов, поскольку рассмотрение частных случаев задачи вполне вероятно может привести решающего к методу решения задачи в общем случае. Подробнее – если задача трудная, то полезно попытаться выделить какой-либо простой ее частный случай, с которым нетрудно справиться. После этого следует перейти к другим, более сложным случаям, и так до тех пор, пока будет решена задача.

Дата: 2019-12-10, просмотров: 195.