Бесселевы функции с любым индексом
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Содержание

 

Задание на курсовую работу ....................................................................... 2

Замечания руководителя .............................................................................. 3

1. Бесселевы функции с любым индексом ................................................... 5

2. Формулы приведения для бесселевых функций ..................................... 10

3. Бесселевы функции с полуцелым индексом ............................................. 13

4. Интегральное представление бесселевых функций с целым индексом .. 15

5. Ряды Фурье-Бесселя ................................................................................. 18

6. Асимптотическое представление бесселевых функций с целым индексом для больших значений аргумента ...................................................................... 23

Список литературы ...................................................................................... 30



Бесселевы функции с любым индексом

 

Уравнение Лапласа в цилиндрических координатах

Чтобы объяснить происхождение бесселевых функций, рассмотрим уравнение Лапласа в пространстве:

.                                                                             (1)

Если перейти к цилиндрическим координатам по формулам:

, , ,

то уравнение (1) примет следующий вид:

.                                                             (2)

Поставим задачу: найти все такие решения уравнения, которые могут быть представлены в виде произведения трех функций, каждая из которых зависит только от одного аргумента, то есть найти все решения вида:

,

где , ,  предполагаются дважды непрерывно дифференцируемыми.

Пусть  есть решение упомянутого вида. Подставляя его в (2), получим:

,

откуда (после деления на )

.

Записав это в виде:

,

найдем, что левая часть не зависит от , правая не зависит от , ; следовательно, общая величина этих выражений есть некоторая постоянная . Отсюда:

; ;

; ;

.

В последнем равенстве левая часть не зависит от , правая не зависит от ; следовательно, общая величина этих выражений есть некоторая постоянная . Отсюда:

, ;

, .

Таким образом, , ,  должны удовлетворять линейным дифференциальным уравнениям второго порядка:

,

(3)

, ,

из которых второе и третье есть простейшие линейные уравнения с постоянными коэффициентами, а первое является линейным уравнением с переменными коэффициентами нового вида.

Обратно, если , ,  удовлетворяют уравнениям (3), то  есть решение уравнения (2). В самом деле, подставляя  в левую часть (2) и деля затем на , получим:

.

Таким образом, общий вид всех трех решений уравнения (2), которые являются произведением трех функций, каждая из которых зависит от одного аргумента, есть , где , ,   – любые решения уравнений (3) при любом выборе чисел , .

Первое из уравнений (3) в случае ,  называется уравнением Бесселя. Полагая в этом случае , обозначая независимую переменную буквой  (вместо ), а неизвестную функцию – буквой  (вместо ), найдем, что уравнение Бесселя имеет вид:

.                                                               (4)

Это линейное дифференциальное уравнение второго порядка с переменными коэффициентами играет большую роль в приложениях математики. Функции, ему удовлетворяющие, называются бесселевыми, или цилиндрическими, функциями.

 

Интегральное представление бесселевых функций с целым индексом

Ряды Фурье-Бесселя

 

Рассмотрим на каком-либо интервале  (конечном или бесконечном) два дифференциальных уравнения

,                      ,                                 (20)

где  и  – непрерывные функции на . Пусть  и  – ненулевые решения этих уравнений. Умножение на  и на  и последующее вычитание дают

.

Пусть  и  принадлежат  и , тогда после интегрирования в пределах от  до  получим

.                                            (21)

Если  и  – соседние нули решения , то между  и  сохраняет постоянный знак, пусть, например,  на ( , ) (в противном случае следует заменить  на ), тогда ,  (равенство нулю исключено, так как  – ненулевое решение дифференциального уравнения второго порядка). Если на , то  должна, по крайней мере, раз обращаться в нуль между  и , так как иначе  сохранит постоянный знак на ( , ). Пусть, например,  на ( , ) (в противном случае заменяем  на ), и тогда из (21) получим противоречие, ибо левая часть ≤0, а правая >0. Таким образом доказана теорема сравнения Штурма: если P(x)<Q(x) на рассматриваемом интервале I и если y и z – ненулевые решения уравнений (20), то между каждыми двумя соседними нулями y(x) находится по крайней мере один нуль z(x).

Из теоремы сравнения Штурма вытекают нижеследующие следствия. Если  на , то каждое ненулевое решение уравнения  может иметь на  не более одного нуля (это легко видеть, если положить  и взять ). Если  на  (где ), то для всяких двух соседних нулей  и  ( ) каждого ненулевого решения уравнения  имеем  (это легко видеть, если положить , взять  и заметить, что нулями  будут только числа вида ,  целое). Если  на  (где ), то для всяких двух соседних нулей каждого ненулевого решения уравнения  имеем  (это легко видеть, если положить  и взять ). Из сказанного следует, что если  на , то для всяких двух соседних нулей  и  ( ) каждого ненулевого решения уравнения  имеем .

Изложенное показывает, что если  непрерывна на  и превышает некоторое положительное число вблизи +∞, то каждое ненулевое решение  уравнения имеет на  бесконечно много нулей. Если еще  вблизи  не обращается в нуль, то эти нули образуют бесконечную возрастающую последовательность , имеющую пределом +∞, а если, кроме того, , где , то .

Рассмотрим уравнение Бесселя

на интервале . Подстановка  приводит к уравнению

.

Очевидно,  и  имеют одни и те же нули. Так как , где  – целая функция, то  не имеет нулей на  при достаточно малом , и так как  при , то при каждом  нули  на  образуют бесконечную возрастающую последовательность

причем .

Если , то  удовлетворит уравнению

на интервале (0, +∞). Подстановка  приводит к уравнению

и, следовательно,  удовлетворяет этому уравнению. Таким образом, при любых положительных  и  имеем

, где ,

, где ,

откуда

,

следовательно,

, где .                                   (22)

Пусть теперь . Разложение  по степеням  начинается с члена, содержащего , разложение  по степеням  начинается с члена, содержащего , так как коэффициент при  равен нулю, что легко видеть, исходя из формулы (5). Следовательно, из (22) при  получим

,

то есть

,           (23)

откуда видно, что если  и  являются разными нулями функции , то

.                                                                   (23`)

Этим доказано, что при  система функций

на интервале  является ортогональной относительно веса .

Переходя к пределу при  в соотношении

и используя правило Лопиталя, получим при всяком

,                  (24)

следовательно, если  является нулем функции , то

.                                                              (24`)

Таким образом, при каждом  всякой непрерывной функции  на , удовлетворяющей требованию

,

поставлен в соответствие ряд Фурье-Бесселя

,                                                                         (25)

коэффициенты которого определяются формулами

.                                                     (25`)

Можно доказать, что система функций  на , ортогональная относительно веса , замкнутая. В частности, если ряд Фурье-Бесселя (25) равномерно сходится к порождающей его непрерывной функции .

Можно показать, что если  и  непрерывная на  и кусочно-гладкая на  функция, то ряд Фурье-Бесселя этой функции сходится к ней при .



Список литературы

 

1. Пискунов Н. С. «Дифференциальное и интегральное исчисления», учебное пособие для втузов, М: Наука, 1985г., 560 стр.

2. Романовский П. И. «Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа», учебное пособие для втузов, М: Наука, 1983г., 336 стр.

Содержание

 

Задание на курсовую работу ....................................................................... 2

Замечания руководителя .............................................................................. 3

1. Бесселевы функции с любым индексом ................................................... 5

2. Формулы приведения для бесселевых функций ..................................... 10

3. Бесселевы функции с полуцелым индексом ............................................. 13

4. Интегральное представление бесселевых функций с целым индексом .. 15

5. Ряды Фурье-Бесселя ................................................................................. 18

6. Асимптотическое представление бесселевых функций с целым индексом для больших значений аргумента ...................................................................... 23

Список литературы ...................................................................................... 30



Бесселевы функции с любым индексом

 

Уравнение Лапласа в цилиндрических координатах

Чтобы объяснить происхождение бесселевых функций, рассмотрим уравнение Лапласа в пространстве:

.                                                                             (1)

Если перейти к цилиндрическим координатам по формулам:

, , ,

то уравнение (1) примет следующий вид:

.                                                             (2)

Поставим задачу: найти все такие решения уравнения, которые могут быть представлены в виде произведения трех функций, каждая из которых зависит только от одного аргумента, то есть найти все решения вида:

,

где , ,  предполагаются дважды непрерывно дифференцируемыми.

Пусть  есть решение упомянутого вида. Подставляя его в (2), получим:

,

откуда (после деления на )

.

Записав это в виде:

,

найдем, что левая часть не зависит от , правая не зависит от , ; следовательно, общая величина этих выражений есть некоторая постоянная . Отсюда:

; ;

; ;

.

В последнем равенстве левая часть не зависит от , правая не зависит от ; следовательно, общая величина этих выражений есть некоторая постоянная . Отсюда:

, ;

, .

Таким образом, , ,  должны удовлетворять линейным дифференциальным уравнениям второго порядка:

,

(3)

, ,

из которых второе и третье есть простейшие линейные уравнения с постоянными коэффициентами, а первое является линейным уравнением с переменными коэффициентами нового вида.

Обратно, если , ,  удовлетворяют уравнениям (3), то  есть решение уравнения (2). В самом деле, подставляя  в левую часть (2) и деля затем на , получим:

.

Таким образом, общий вид всех трех решений уравнения (2), которые являются произведением трех функций, каждая из которых зависит от одного аргумента, есть , где , ,   – любые решения уравнений (3) при любом выборе чисел , .

Первое из уравнений (3) в случае ,  называется уравнением Бесселя. Полагая в этом случае , обозначая независимую переменную буквой  (вместо ), а неизвестную функцию – буквой  (вместо ), найдем, что уравнение Бесселя имеет вид:

.                                                               (4)

Это линейное дифференциальное уравнение второго порядка с переменными коэффициентами играет большую роль в приложениях математики. Функции, ему удовлетворяющие, называются бесселевыми, или цилиндрическими, функциями.

 

Дата: 2019-12-22, просмотров: 199.