Теория чисел Фибоначчи: история и современность
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

ЧИСЛА ФИБОНАЧЧИ

Введение

Древняя история богата выдающимися математиками. Многие достижения древней математической науки до сих пор вызывают восхищение остротой ума их авторов, а имена Евклида, Архимеда, Герона известны каждому образованному человеку. Иначе обстоит дело с математикой средневековья. Математика в эту эпоху развивалась чрезвычайно медленно, и крупных математиков тогда было очень мало. Тем больший интерес представляет для нас сочинение "Liber abacci" ("Книга об абаке"), написанная знаменитым итальянским математиком Леонардо из Пизы (ок. 1170-после 1228), более известный под прозвищем Фибоначчи, который был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.

В дипломной работе рассматриваются числа последовательности Фибоначчи, их свойства, а также, тесно связанный с этой темой, феномен золотого сечения, в котором большинство ученых видят одно из наиболее ярких, давно уже замеченных человеком проявлений гармонии природы. Феномен золотого сечения рассмотрен в работе в общей картине исторического становления архитектуры, на формах живой природы и за пределами предметного мира, в области гармонии и математических абстракций. Он рассмотрен и как объективная характеристика объектов искусства, экономики и т. д.

Общеизвестно, что золотое сечение – это закон пропорциональной связи целого и составляющих это целое частей. Классический пример золотого сечения – деление отрезка в среднепропорциональном отношении, когда целое так относится к большей своей части, как большая часть – к меньшей: (a+b)/b = b/a. Такая задача имеет решение в виде корней уравнения x2 – x – 1 = 0.За кажущейся простотой операции деления в крайнем и среднем отношении скрыто множество удивительных математических свойств и множество форм выражения пропорции золотого сечения.

Золотое сечение, как и загадочные свойства чисел Фибоначчи, владели мыслью и чувствами многих выдающихся мыслителей прошлого и продолжает волновать умы современников наших не ради самих математических свойств, а потому, что неотделимо от ценности объектов искусства и в то же время обнаруживает себя как признак структурного единства объектов природы. Скульптура, архитектура, музыка, астрономия, биология, психология, техника – вот те сферы, где так или иначе обнаруживает свою жизнь золотое сечение. Современные исследователи находят его при описании строения растений, пропорций тел животных, птиц, человека, в статистике популяций, в строении глаза и строении космоса и т. д.

Мы не можем сегодня с абсолютной достоверностью определить, когда и как понятие золотого сечения было выделено в человеческом знании из интуитивной и опытной категорий. Но судить обоснованно, кто прав: те ли, кто относит открытие золотого сечения к цивилизациям древнего Востока (Египет. Индия), или те, кто, подобно Кеплеру, связывает открытие золотого сечения с именем Пифагора, можно, но для этого необходимо владеть базовыми историческими и математическими познаниями.

В эпоху Ренессанса среднепропорциональное отношение именовали Sectio divina – божественной пропорцией. Леонардо да Винчи дает ему имя Sectio aurea (золотое сечение), живое поныне, а много раньше, в 1202 г., открытием ряда Фибоначчи было обнажено фундаментальное свойство золотого сечения – единство аддитивности и мультипликативности.

Сегодня сущность гармонии невозможно выявить ни в биологии, ни в искусстве, ни в абстрактно-математических построениях, если рассматривать их раздельно, – здесь можно лишь наблюдать и осмысливать ее проявления. "Философия, – говорил Галилео Галилей, – написана в той величественной книге, которая постоянно открыта у нас перед глазами (я имею в виду Вселенную), но которую невозможно понять, если не научиться предварительно ее языку и не узнать те письмена, которыми она начертана". "Божественная пропорция – бесценное сокровище, одно из двух сокровищ геометрии", – развивает эту же мысль Кеплер. Действительно, гармония может быть расшифрована лишь на ее собственном языке, отображенном фундаментальными принципами естествознания.

Цель дипломной работы – показать новые пути исследования природы гармонии: пути различные, основанные на рассмотрении разных объектов искусства и естествознания, но приводящие к взаимосвязанным выводам, хорошо согласованным с реальностью.

Раскрытие объективных законов гармонии формирует прочный фундамент мировоззренческого и профессионального отношения к творчеству и, следовательно, к жизни. Изучение и постижение законов гармонии способно направить творческую деятельность человека не в русло эклектики формотворчества, не в русло формирования моды в искусстве, а в русло созидания нового, созвучного объективным законам восприятия, которыми отображены законы гармонии в природе. В этом состоит одна из важнейших профессиональных и социальных задач воспитания и просвещения.

Золотое сечение

Иоганн Кеплер говорил, что геометрия владеет двумя сокровищами – теоремой Пифагора и золотым сечением. И если первое из этих двух сокровищ можно сравнить с мерой золота, то второе с драгоценным камнем.

Теорему Пифагора знает каждый школьник, а что такое золотое сечение – далеко не все. Так что же такое золотое сечение, и какая существует связь между ним и числами Фибоначчи?

Как уже упоминалось в разделе 2, число (1 + )/2 ≈ 1.61803 играет важную роль во многих разделах математики, равно как и в мире искусств, где с античных времен оно рассматривалось как эстетически самое благоприятное отношение. Поэтому оно имеет специальное название – отношение золотого сечения и обозначается греческой буквой Ф в честь Фидия, который, как утверждается, сознательно использовал его в своих скульптурах. Связь этого числа с числами Фибоначчи устанавливается посредством Формулы Бине (или точнее, формулы Бернулли-Бине):

F(z) = ( ) / .

Однако, есть и другой – геометрический – подход к определению золотого сечения. Через золотое сечение числа Фибоначчи проявляют свои свойства в самых различных сферах. Многие наблюдаемые закономерности в этой области до сих пор не объяснены наукой. Но знать о них должен каждый исследователь.

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение гармоническая пропорция. В математике пропорцией называют равенство двух отношений: a : b = c : d.

Отрезок АВ можно разделить точкой C на две части следующими способами:

1) на две равные части АВ: АC = АВ: ВC;

2) на две неравные части в любом отношении (такие части пропорции не образуют);

3) таким образом, когда АВ: АC = АC: ВC.

Последнее и есть золотое сечение или деление отрезка в крайнем и среднем отношении.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

a : b = b: c или с: b = b: а.

Pис. 2. Геометрическое изображение золотой пропорции

Если c принять за единицу, то отрезки золотой пропорции выражаются бесконечными иррациональными дробями b = 0,618..., a = 0,382... Как мы уже знаем, числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи. На этой пропорции базируются основные геометрические фигуры.

Прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Он также обладает интересными свойствами. Если от него отрезать квадрат, то останется вновь золотой прямоугольник. Этот процесс можно продолжать до бесконечности. А если провести диагональ первого и второго прямоугольника, то точка их пересечения будет принадлежать всем получаемым золотым прямоугольникам.

Разумеется, есть и золотой треугольник. Это равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания равняется 1.618.

Pис. 3. Золотой треугольник

Есть и золотой кубоид – это прямоугольный параллелепипед с ребрами, имеющими длины 1.618, 1 и 0.618.

В звездчатом пятиугольнике каждая из пяти линий, составляющих эту фигуру, делит другую в отношении золотого сечения, а концы звезды являются золотыми треугольниками.

Pис. 4. Построение правильного пятиугольника и пентаграммы

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н. э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании.

Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Cети I в Абидосе и в рельефе, изображающем фараона Pамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Kвадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Pис. 5. Динамические прямоугольники

Платон (427-347 гг. до н. э.) также знал о золотом делении. Его диалог "Тимей" посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Pис. 6. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в "Началах" Евклида. Во 2-й книге "Начал" дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н. э.), Папп (III в. н. э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам "Начал" Евклида. Переводчик Дж. Kампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне, они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением, как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро Дела Франчески, написавшего две книги, одна из которых называлась "О перспективе в живописи". Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли "Божественная пропорция" с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее "божественную суть" как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Аль Брехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. "Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать".

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Аль Брехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т. д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Коган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы "вместе с водой выплеснули и ребенка". Вновь "открыто" золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд "Эстетические исследования". Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства.

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т. д.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название "Золотое деление как основной морфологический закон в природе и искусстве". В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга.

В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики применение закона золотого сечения распространилось на конструирование машин, мебели и пр.

Пропорция, выражаемая числом Ф, по мнению многих исследований, является наиболее приятной для человеческого глаза.

Леонардо де Винчи считал, что идеальные пропорции человеческого тела должны быть связаны с числом Ф. Деление отрезка в отношении Ф он назвал "золотым сечением". В эпоху возрождения "золотое сечение" было очень популярно среди художников, скульпторов и архитекторов. Размеры картины было принято брать такими, чтобы отношение ширины к высоте равнялось Ф. Этот термин сохранился до наших дней, и само "золотое сечение" по прежнему играет важную роль в искусстве. Им руководствовался, например, великий архитектор Ле Корбюзье.

Прямоугольник с таким отношением сторон стали называть "золотым прямоугольником".

Форму "золотого сечения" придавали книгам, столам почтовым открыткам. В дальнейшем книгам и другим бумажным изделиям стали чаще придавать форму прямоугольника с отношением сторон корень из двух. Это связано с тем, что при перегибании такого прямоугольника по средней линии образуются два прямоугольника с тем же соотношением сторон.

Число золотого сечения Ф обладает какой-то странной неуловимостью. Оно появляется в различных проекциях, так и не давая ответа на вопрос, как это число связано с тем или иным явлением. Интерес к мистическому числу Ф достаточно периодичен. Он возникает с обнаружением нового проявления этого числа в каком-либо явлении природы.

Проходит время, и интерес к нему спадает. Но ненадолго. Числу Ф находят всё новое и новое применение, но оно так и остается недоступным для ясного и полного понимания его свойств и степени его влияния на окружающий мир.

Раковина

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе.

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

ОБ:ОА=ОВ:ОБ=ОГ:ОВ=... =1.618

(ОБ+ОГ):(ОВ+ОА)=... =1.618

Pис. 7. Спираль Архимеда

Растения и животные

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т. д.

Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения.

Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль "кривой жизни".

Среди придорожных трав растет ничем не примечательное растение – цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.

Pис. 8. Цикорий

Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т. д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения. В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

Pис. 9. Ящерица живородящая

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.

Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Pис. 10. Яйцо птицы

Великий Гёте, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов.

Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Последовательность чисел Фибоначчи обладает удивительной связью с живой природой. В частности, она лежит в основе ботанического явления филлотаксиса, законы которого определяют внешние формы сосновой шишки, кактуса, ананаса, пальмового дерева и т. д.

Семена в головке подсолнуха расположены на пересечении левосторонних и правосторонних спиралей, число которых выражается с помощью соседних чисел Фибоначчи. Но самым выдающимся открытием современной науки, несомненно, стало обнаружение чисел Фибоначчи и золотого сечения в структуре генетического кода.

Космос

Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда нашел закономерность и порядок в расстояниях между планетами солнечной системы.

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в. Ряд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты – свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

Пирамиды

Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скорее неразрешимая головоломка из числовых комбинаций. Замечательные изобретательность, мастерство, время и труд архитекторов пирамиды, использованные ими при возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий.

Ключ к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь треугольника

356 x 440 / 2 = 78320

Площадь квадрата

280 x 280 = 78400

Длина грани пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды – 484.4 фута (147.6 м). Длина грани, деленная на высоту, приводит к соотношению Ф=1.618.Высота 484.4 фута соответствует 5813 дюймам (5-8-13) – это числа из последовательности Фибоначчи.

Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью – передать знания, которые они хотели сохранить для грядущих поколений.

Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Пирамиды в Мексике. Не только египетские пирамиды построены в соответствии с совершенными пропорциями золотого сечения, то же самое явление обнаружено и у мексиканских пирамид. Возникает мысль, что как египетские, так и мексиканские пирамиды были возведены приблизительно в одно время людьми общего происхождения.

На поперечном сечении пирамиды видна форма, подобная лестнице. В первом ярусе 16 ступеней, во втором 42 ступени и в третьем – 68 ступеней.

Эти числа основаны на соотношении Фибоначчи следующим образом:

16 x 1.618 = 26

16 + 26 = 42

26 x 1.618 = 42

42 + 26 = 68

Интересно, что и на Марсе в районе Сидония обнаружены аномальные объекты, имеющие пирамидальную форму, а один из объектов напоминает человеческое лицо. Взаимное расположение этих объектов также связано с золотой пропорцией. Случайное ли это совпадение, или же "пирамиды" на Марсе служат неким знаком погибшей цивилизации? Данный вопрос еще ждет своего окончательного разрешения.

Общие методические указания

Начинать изучение чисел Фибоначчи следует с демонстрации их естественного появления во многих задачах и ситуациях. Помимо классической задачи о кроликах необходимо сформулировать и другие задачи, в которых появляются числа Фибоначчи.

Наглядный пример естественного возникновения чисел Фибоначчи дают, например, так называемые "родословные деревья пчел" Рассмотрим родословную пчелы-самца. Каждый самец (называемый также трутнем) появляется на свет непарным путем от самки (называемой также маткой), однако каждая самка имеет двух родителей – самца и самку. Несколько начальных уровней такого дерева представлены ниже на рисунке 13.

Рис. 13.

У трутня один дед и одна бабка, один прадед и две прабабки, два прапрадеда и три прапрабабки. И вообще, как легко установить по индукции, у него ровно Fn+1 праn-дедушек и Fn+2 праn-бабушек.

Числа Фибоначчи часто обнаруживаются в природе – возможно, по причинам, аналогичным закону образования родословного дерева пчел. К примеру, семечки, плотно набитые в крупную "корзинку" обыкновенного подсолнуха, располагаются по спиралям – обычно это 34 спирали, закручивающиеся в одном направлении, и 55 спиралей – в другом. Корзинки поменьше будут иметь соответственно 21 и 34, или же 13 и 21 спираль, а однажды в Англии демонстрировался гигантский подсолнух с 89 спиралями одного направления и 144 – другого. Подобные закономерности обнаруживаются и в некоторых видах сосновых шишек.

Еще рассмотрим пример другого рода. Предположим, что друг на друга наложены две стеклянные пластинки. Сколько существует способов аn прохождения луча света через пластинки или отражения от них после изменения его направления № раз? Несколько первых случаев таковы (см. рис. 14):

а0 = 1 а1 = 2 а2 = 3 а3 = 5

Рис. 14.

Когда № четно, получается четное число преломлений, и луч проходит насквозь; когда же № нечетно, луч отражается и выходит с той стороны, с которой и вошел. По-видимому, аn будут числами Фибоначчи и непродолжительное разглядывание рисунка показывает почему: при № ≥ 2 преломляющиеся № раз лучи либо претерпевают свое первое отражение от внешней поверхности и продолжают прохождение an-1 способами, либо начинают с отражения от внутренней поверхности и затем снова отражаются в обратном направлении, чтобы закончить прохождение an-2 способами. Таким образом, получается фибоначчиева рекуррентность an = an-1 + an-2.Начальные условия отличаются, но не очень, поскольку а0 = 1 = F2 и а1 = 2 = F3; следовательно, все просто сдвигается на два, так что au = Fu+2.

После демонстрации элементарных задач нужно кратко рассказать об истории изучения чисел Фибоначчи, напомнить, что эти числа ввел в 1202 г. Леонардо Фибоначчи, и математики постепенно стали выяснять все больше и больше интересного о них. Например, Эдуард Люка, причастный к головоломке о ханойской башне, активно занимался ими во второй половине девятнадцатого столетия (в действительности, благодаря именно Люка, название "числа Фибоначчи" стало общеупотребительным). Одно из его удивительных достижений состояло в использовании свойств чисел Фибоначчи для доказательства того, что 39-значное число Мерсенна 2127 – 1 является простым.

После первого знакомства с числами Фибоначчи имеет смысл поговорить о проявлениях свойств чисел Фибоначчи в природе, искусстве, науке и технике. Здесь же нужно сформулировать понятие "золотого сечения" и на примерах проиллюстрировать все разнообразие ситуаций, в которых оно обнаруживается. Данная тема воспринимается школьниками обычно очень эмоционально, и это надо использовать, чтобы закрепить интерес к ее изучению и к изучению математики вообще.

После этого можно выбрать одно или несколько направлений, которые будут изучаться более подробно. Выигрышным вариантом следует признать изучение рекуррентных соотношений. В рамках данной темы возможны отклонения в самых различных направлениях. Многообразие задач здесь тоже очень велико. И ценно также то, что в процессе изучения темы выстраивается стройная теория рекуррентных соотношений. Т. е. учащиеся знакомятся с цельной теорией, имеющей множество приложений. Используемые же при этом методы достаточно элементарны и доступны для понимания. При этом охватываются многие разделы комбинаторики.

На уроках информатики стоит решить несколько комбинаторных задач и написать для них программы, вычисляющие неизвестные значения. Можно поэкспериментировать с нахождением времени, необходимого машине на вычисление тех или иных чисел.

Решение задач

При решении многих комбинаторных задач школьники часто пользуются методом сведения данной задачи к задаче, касающейся меньшего числа предметов. Метод сведения к аналогичной задаче для меньшего числа предметов называется методом рекуррентных соотношений (от латинского recurrere – возвращаться). Пользуясь рекуррентным соотношением, можно свести задачу об № предметах к задаче об № – 1 предметах, потом к задаче об № – 2 предметах и т. д. Последовательно уменьшая число предметов, доходим до задачи, которую уже легко решить. Во многих случаях удается получить из рекуррентного соотношения явную формулу для решения комбинаторной задачи.

Например, так можно вывести формулу Рn = n! для числа перестановок № элементов с помощью формулы для числа размещений без повторений. Но ту же формулу можно вывести и иначе, найдя сначала рекуррентное соотношение, которому удовлетворяет Рn.

Пусть у нас есть № предметов a1,..., an-1, an. Любую их перестановку можно получить так: взять некоторую перестановку предметов a1,..., an-1 и присоединить к ней элемент аn. Ясно, что элемент аn может занять различные места. Его можно поставить в самое начало, между первым и вторым элементами перестановки, между вторым и третьим, можно поставить и в самый конец. Число различных мест, которые может занять элемент аn, равно n, и потому из каждой перестановки элементов a1,..., an-1 получается № перестановок элементов a1,..., an-1, an. Но это означает, что перестановок из № элементов в № раз больше, чем перестановок из № – 1 элементов. Тем самым установлено рекуррентное соотношение:

Рn = № Рn-1.

Пользуясь этим соотношением, последовательно выводим, что:

Рn = № Рn-1 = № (n-1) Рn-2 = № (n-1) … 2Р1.

Но Рn = l, так как из одного элемента можно сделать лишь одну перестановку. Поэтому:

Рn = № (n-1) … 2 1 = n!.

Таким образом, мы снова получили формулу Рn = n!.

Много рекуррентных соотношений встречалось нам при решении задач на разбиения, задач о фигурах на шахматной доске и т. д. Сейчас мы рассмотрим еще несколько таких задач, а в заключение остановимся на общей теории рекуррентных соотношений.

Задача о кроликах: Пара кроликов приносит раз в месяц приплод из двух крольчат (самки и самца), причем новорожденные крольчата через два месяца после рождения уже приносят приплод. Сколько кроликов появится через год, если в начале года была одна пара кроликов?

Решение: Из условия задачи следует, что через месяц будет две пары кроликов. Через два месяца приплод даст только первая пара кроликов, и получится 3 пары. А еще через месяц приплод дадут н исходная пара кроликов, и пара кроликов, появившаяся два месяца тому назад. Поэтому всего будет 5 пар кроликов.

Обозначим через F(n) количество пар кроликов по истечении № месяцев с начала года. Мы видим, что через № + 1 месяцев будут эти F(n) пар и еще столько новорожденных пар кроликов, сколько было в конце месяца № – 1, то есть еще F(n – 1) пар кроликов. Иными словами, имеет место рекуррентное соотношение:

F(n + l) = F(n) + F(n – l). (35)

Так как, по условию, F(0) = 1 и F(1) = 2, то последовательно находим:

F(2) = 3, F(3) = 5, F(4) = 8 и т. д.

В частности, F(12) =377.

Числа F(n) называют числами Фибоначчи. Они обладают целым рядом замечательных свойств. Сейчас мы выведем выражение этих чисел через комбинаторные коэффициенты Ckm. Для этого установим связь между числами Фибоначчи и следующей комбинаторной задачей.

Найти число n-последовательностей, состоящих из нулей и единиц, в которых никакие две единицы не идут подряд.

Чтобы установить эту связь, возьмем любую такую последовательность и сопоставим ей пару кроликов по следующему правилу: единицам соответствуют месяцы появления на свет одной из пар "предков" данной пары (включая и исходную), а нулями – все остальные месяцы. Например, последовательность 010010100010 устанавливает такую "генеалогию" – сама пара появилась в конце 11-го месяца, ее родители – в конце 7-го месяца, "дед" – в конце 5-го месяца и "прадед" – в конце второго месяца. Исходная пара кроликов зашифровывается при этом последовательностью 000000000000.

Ясно, что при этом ни в одной последовательности не могут стоять две единицы подряд – только что появившаяся пара не может, по условию, принести приплод через месяц. Кроме того, при указанном правиле различным последовательностям отвечают различные пары кроликов, и обратно, две различные пары кроликов всегда имеют разную "генеалогию", так как, по условию, крольчиха дает приплод, состоящий только из одной пары кроликов.

Установленная связь показывает, что число n-последовательностей, обладающих указанным свойством, равно F(n).

Докажем теперь, что

F(n) = + C1n + +... + , (36)

где р = (n+1)/2, если № нечетно, и р = n/2, если № четно.

Иными словами, р – целая часть числа (n+1)/2 – (в дальнейшем мы будем обозначать целую часть числа α χерез E(α); ςаким образом, р = E [(n+1)/2].

В самом деле, F(n) – это число всех n-последовательностей из 0 и 1, в которых никакие две единицы не стоят рядом. Число же таких последовательностей, в которые входит ровно k единиц и № – k нулей, равно . Так как при этом должно выполняться неравенство k ≤ № – k + 1, то k изменяется от 0 до E [(n+1)/2]. Применяя правило суммы, приходим к соотношению (36).

Равенство (36) можно доказать и иначе. Положим:

G (n) = + C1n + +... + ,

где р = E [(n+1)/2]. Из равенства = + легко следует, что:

G(n) = G(n – 1) + G(n – 2). (37)

Кроме того, ясно, что G(1)=2 = F(1) и G(2) =3 = F(2).

Так как обе последовательности F(n) и G(n) удовлетворяют рекуррентному соотношению Х(n) =Х(n – 1) + X (n – 2), то имеем:

G(3) = G(2) + G(1) = F(2) + F(l) = F(3),

и, вообще, G(n)=F(n).

Приведем и другой метод доказательства.

Мы непосредственно установили связь между задачей Фибоначчи и комбинаторной задачей. Эту связь можно было установить и иначе, непосредственно доказав, что число Т(n) решений комбинаторной задачи удовлетворяет тому же рекуррентному соотношению:

T(n+1) = T(n) + T(n – 1), (38)

что и числа Фибоначчи.

В самом деле, возьмем любую (n-1)-последовательность нулей и единиц, удовлетворяющую условию, что никакие две единицы не идут подряд. Она может оканчиваться или на 0, или на 1. Если она оканчивается на 0, то, отбросив его, получим n-последовательность, удовлетворяющую нашему условию. Обратно, если взять любую n-последовательность нулей и единиц, в которой подряд не идут две единицы, и приписать к ней нуль, то получим (n+1)-последовательность с тем же свойством. Мы доказали, что число "хороших" последовательностей, оканчивающихся на нуль, равно Т(n).

Пусть теперь последовательность оканчивается на 1. Так как двух единиц подряд быть не может, то перед этой единицей стоит нуль. Иными словами, последовательность оканчивается на 01. Остающаяся же после отбрасывания 0 и 1 (n – 1)-последовательность может быть любой, лишь бы в ней не шли подряд две единицы.

Поэтому число "хороших" последовательностей, оканчивающихся единицей, равно Т(n – 1). Но каждая последовательность оканчивается или на 0, или на 1. В силу правила суммы получаем, что Т(n + 1) = Т(n) + Т(n – 1).

Мы получили, таким образом, то же самое рекуррентное соотношение. Отсюда еще не вытекает, что числа Т(n) и F(n) совпадают.

Чтобы доказать совпадение чисел Т(n) и F(n), надо еще показать, что T(n)=F(n) и T(2) – F(2) – тогда уже в силу рекуррентного соотношения имеем и T(3)=F(3), T(4)=T(4) и т. д. Существуют две 1-последовательности, удовлетворяющие поставленному условию: 0 и 1, и три 2-последовательности; 00, 01 и 10.

Поэтому T(1) = 2 = F(1) и T(2) =3 =. F(2). Тем самым утверждение доказано.

Для решения комбинаторных задач часто применяют метод, использованный выше. Устанавливают для данной задачи рекуррентное соотношение и показывают, что оно совпадает с рекуррентным соотношением для другой задачи, решение которой нам уже известно. Если при этом совпадают и начальные члены последовательностей в достаточном числе (позже мы остановимся подробнее на том, сколько членов должны совпадать), то обе задачи имеют одинаковые решения.

Применим описанный прием для решения следующей задачи.

Задача. Пусть дано некоторое множество из № предметов, стоящих в определенном порядке. Разобьем это множество на две непустые части так, чтобы одна из этих частей лежала левее второй (то есть, скажем, одна часть состоит из элементов от первого до m-го, а вторая – из элементов от (m + 1)-го до n-го). После этого каждую из частей таким же образом разобьем на две непустые части (если одна из частей состоит уже из одного предмета, она не подвергается дальнейшим разбиениям). Этот процесс продолжается до тех пор, пока не получим части, состоящие из одного предмета каждая. Сколько существует таких процессов разбиения (два процесса считаются различными, если хотя бы на одном шагу они приводят к разным результатам)?

Решение: Обозначим число способов разбиения для множества из n+1 предметов через Вn. На первом шагу это множество может быть разбито № способами (первая часть может содержать один предмет, два предмета,..., и предметов). В соответствии с этим множество всех процессов разбиений распадается на № классов – в s-й класс входят процессы, при которых первая часть состоит из s предметов.

Подсчитаем число процессов в s-м классе. В первой части содержится s элементов. Поэтому ее можно разбивать далее Bs-1 различными процессами. Вторая же часть содержит № – s+1 элементов, и ее можно разбивать далее Bn-s процессами. По правилу произведения получаем, что s-й класс состоит из Bs-1Bn-s различных процессов. По правилу суммы отсюда вытекает, что:

Bn = B0 Bn-1 + B1 Bn-2 + … + Bn-1 B0 (39)

Мы получили рекуррентное соотношение для Bn. Этому соотношению удовлетворяют числа:

Тn =

Чтобы доказать равенство

Вn = Тn = . (40)

нам осталось показать, что начальные члены Т0 и В0 последовательностей T0, T1,..., Tn, … и В0, В1,..., Вn,... совпадают.

Мы имеем T0 = =1. С другой стороны, В0 = 1, так как множество из одного элемента можно разделить единственным образом. Итак, В0 = T0.Но по рекуррентной формуле имеем В1 = =1.Так как T0 удовлетворяет той же рекуррентной формуле, то T1 = = 1.Далее устанавливаем, что:

B2 = B0 B1 + B1 B0 = 2 и T2 = T0 T1 + T1 T0 = 2 и т. д.

Итак, все члены обеих последовательностей совпадают. Таким образом, доказан следующий результат:

Число процессов последовательного деления множества из № + 1 элементов, расположенных в некотором порядке, равно:

Тn = .

Заключение

Итак, числа Фибоначчи и проблема золотого сечения волнуют умы многих поколений ученых, философов, математиков, архитекторов. История золотого сечения уходит в пласты тысячелетий. В наше время трудно назвать сферу человеческой деятельности, где бы золотое сечение не находило практического использования. Оно, золотое сечение, вездесуще. Об этом убедительно говорят публикации, посвященные исследованию золотого сечения, число которых растет год от года. Сегодня уже нет надобности собирать отдельные факты в той или иной сфере научного поиска – накопленный эмпирический материал очень велик. Сегодня палитра самых разных проявлений золотого сечения обязывает выдвинуть тезис о том, что золотое сечение вовсе не частный случай пропорциональной зависимости, уникальной своими закономерностями, среди прочих пропорциональных соотношений, а что оно – золотое сечение – есть феномен [18, с. 124-128], пронизывающий собой все уровни организации материальных объектов, обладающих динамическими качествами, т. е. общесистемное явление.

В связи с этим в заключение в качестве итога приведем выборку из шкалы названий целых отраслей знания, где в том или ином виде золотое сечение обнаруживает и проявляет себя.

1) Растительные и животные организмы.

2) Пропорции тела и органов человека. Отметим, что закономерность золотого сечения в организации нейрофизиологической структуры человека прослеживается наиболее многопланово: помимо указанных факторов это и строение слуховой улитки, и взаиморасположение палочек и колбочек глазного яблока, и характер пульсации сердечной мышцы, – вся конституция человеческого тела пронизана единой ритмической зависимостью. И если в природе доминирует правило золотого сечения как основной организационный коррелят, то человеческий организм есть зеркало природы, которое настроено в резонанс с прочими объектами, дискретный характер организации которых инвариантен биоритмике человека. По этой причине "зеркало", подобно радару, способно активно и с наименьшими усилиями реагировать на сигналы, исходящие от этих объектов, и наиболее ёмко воспринимать их посредством органов чувств, транспортируя по нервным каналам для "прочтения" на уровень сознания.

3) Биоритмы головного мозга.

4) Компоненты генного аппарата человека и животных.

5) Строение почвенного плодородного слоя.

6) Планетарные системы.

7) Энергетические взаимодействия на уровне элементарных частиц.

8) Аналоговые ЭВМ.

9) Теория кодирования, обработка и защита информации

10) Темперированный звукоряд.

11) Произведения всех видов искусства, включая архитектуру. Певучесть скрипки, красота ее голоса находится в прямой зависимости от того, в какой мере форма инструмента согласована с пропорцией золотого сечения.

Утверждаемая закономерность гармония – есть общая закономерность в смысле качественного обобщения. Поэтому законы гармонии есть числовые законы. Они не противоречат уже открытым законам природы.

При сравнении законов гармонии с экспериментом числа должны состоять, как минимум, из трех значащих цифр. Точность – фундаментальная черта гармонии. Принцип неопределенности здесь не действует, так как при построении теории числовой гармонии не вводятся пространственно-временные координаты. Поэтому связь с экспериментом принципиально не содержится в математической форме закона (как в законах физики, химии и т. д.) Тем не менее, законы гармонии приложи мы к любым объектам, так как любые объекты системны, т. е. обладают структурой и, следовательно, могут быть переведены на числовые параметры.

Многие исследователи гармонии связывают ее с золотым сечением и пытаются объяснить известными законами. Одни ищут физический смысл гармонии, другие – биологический, психологический и т. д. Дело же состоит в расширении точки зрения на познание и формулировке законов гармонии, при которой золотое сечение оказывается в ряду этих законов.

Методологически (в элементарном смысле) можно представить себе две точки зрения на изучение множества объектов: 1) положение каждого объекта в пространстве и изменение этого положения со временем; 2) отношение объектов (по тем или иным параметрам) и их расположение в целостной системе. Первый метод общеизвестен, он относится к познанию законов движения, второй – к познанию гармонии. Факты показывают, что второй метод принципиально возможен и необходим.

Наконец, один из главных итогов данной работы заключается в том, что проблематика, связанная с гармонией и золотым сечением, не стоящая в центре внимания современного естествознания, а скорее представляющая как бы ее "задворки", возникает вдруг как следствие ОТО и постоянной Планка.

Тем самым поставлена проблема гармонии как проблема большой науки.

Именно связь проблемы гармонии с основными проблемами естествознания явилась, в частности, одной из важных целей и задач исследования фибоначчиевых закономерностей. Эта связь позволяет утверждать гармонию как новую систему мира – сущностную или целостную.

Список литературы

1. Борисовский Г. Б. Наука, техника, искусство. – М., 1969.

2. Бутусов К. П. Золотое сечение в солнечной системе. – В кн.: Астрометрия и небесная механика. – М. -Л., 1978.

3. Вейль Г. Симметрия. – М., 1968.

4. Виленкин Комбинаторика. – М., Наука, 1969.

5. Волошинов А. В. Математика и искусство. – М., Просвещение, 1992.

6. Воробьев Н. Н. Числа Фибоначчи. – М., Наука, 1984.

7. Гика М. Эстетика пропорций в природе и искусстве. – М., 1936.

8. Гримм Г. Д. Пропорциональность в архитектуре. – М. -Л., 1935.

9. Дубров А. П. Симметрия функциональных процессов. – М., 1980.

10. Кашницкий С. Е. Гармония, сотканная из парадоксов // Культура и жизнь. – 1982.– № 10.

11. Малай Г. Гармония – тождество парадоксов // МН. – 1982.– № 19.

12. Марутаев М. А. О гармонии как закономерности. – М., 1978.

13. Соколов А. Тайны золотого сечения // Техника молодежи. – 1978.– № 5.

14. Соркин Э. Поверить алгеброй гармонию? // Техника и наука. – 1977.– № 9.

15. Стахов А. П. Коды золотой пропорции. – М., 1984.

16. Стахов А. П. Введение в алгоритмическую теорию измерения. – М., 1977.

17. Урманцев Ю. А. Симметрия природы и природа симметрии. – М., 1974.

18. Урманцев Ю. А. Золотое сечение // Природа. – 1968.– № 11.

19. Шевелев И. Ш. и др. Золотое сечение. – М., Стройиздат, 1990.

20. Шмелев И. П. Феномен структурной гармонии // Пространственные конструкции в гражданском строительстве. – Л., 1982.

21. George Johnson, 10 Physics Questions to Ponder for a Millennium or Two, New York Times, Aug. 15, 2000.

22. Kosinov N. Five Fundamental Constants of Vacuum, lying in the Base of all Physical Laws, Constants and Formulas // Physical Vacuum and Nature, 4, 2000, p. 96-102.

ЧИСЛА ФИБОНАЧЧИ

Введение

Древняя история богата выдающимися математиками. Многие достижения древней математической науки до сих пор вызывают восхищение остротой ума их авторов, а имена Евклида, Архимеда, Герона известны каждому образованному человеку. Иначе обстоит дело с математикой средневековья. Математика в эту эпоху развивалась чрезвычайно медленно, и крупных математиков тогда было очень мало. Тем больший интерес представляет для нас сочинение "Liber abacci" ("Книга об абаке"), написанная знаменитым итальянским математиком Леонардо из Пизы (ок. 1170-после 1228), более известный под прозвищем Фибоначчи, который был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.

В дипломной работе рассматриваются числа последовательности Фибоначчи, их свойства, а также, тесно связанный с этой темой, феномен золотого сечения, в котором большинство ученых видят одно из наиболее ярких, давно уже замеченных человеком проявлений гармонии природы. Феномен золотого сечения рассмотрен в работе в общей картине исторического становления архитектуры, на формах живой природы и за пределами предметного мира, в области гармонии и математических абстракций. Он рассмотрен и как объективная характеристика объектов искусства, экономики и т. д.

Общеизвестно, что золотое сечение – это закон пропорциональной связи целого и составляющих это целое частей. Классический пример золотого сечения – деление отрезка в среднепропорциональном отношении, когда целое так относится к большей своей части, как большая часть – к меньшей: (a+b)/b = b/a. Такая задача имеет решение в виде корней уравнения x2 – x – 1 = 0.За кажущейся простотой операции деления в крайнем и среднем отношении скрыто множество удивительных математических свойств и множество форм выражения пропорции золотого сечения.

Золотое сечение, как и загадочные свойства чисел Фибоначчи, владели мыслью и чувствами многих выдающихся мыслителей прошлого и продолжает волновать умы современников наших не ради самих математических свойств, а потому, что неотделимо от ценности объектов искусства и в то же время обнаруживает себя как признак структурного единства объектов природы. Скульптура, архитектура, музыка, астрономия, биология, психология, техника – вот те сферы, где так или иначе обнаруживает свою жизнь золотое сечение. Современные исследователи находят его при описании строения растений, пропорций тел животных, птиц, человека, в статистике популяций, в строении глаза и строении космоса и т. д.

Мы не можем сегодня с абсолютной достоверностью определить, когда и как понятие золотого сечения было выделено в человеческом знании из интуитивной и опытной категорий. Но судить обоснованно, кто прав: те ли, кто относит открытие золотого сечения к цивилизациям древнего Востока (Египет. Индия), или те, кто, подобно Кеплеру, связывает открытие золотого сечения с именем Пифагора, можно, но для этого необходимо владеть базовыми историческими и математическими познаниями.

В эпоху Ренессанса среднепропорциональное отношение именовали Sectio divina – божественной пропорцией. Леонардо да Винчи дает ему имя Sectio aurea (золотое сечение), живое поныне, а много раньше, в 1202 г., открытием ряда Фибоначчи было обнажено фундаментальное свойство золотого сечения – единство аддитивности и мультипликативности.

Сегодня сущность гармонии невозможно выявить ни в биологии, ни в искусстве, ни в абстрактно-математических построениях, если рассматривать их раздельно, – здесь можно лишь наблюдать и осмысливать ее проявления. "Философия, – говорил Галилео Галилей, – написана в той величественной книге, которая постоянно открыта у нас перед глазами (я имею в виду Вселенную), но которую невозможно понять, если не научиться предварительно ее языку и не узнать те письмена, которыми она начертана". "Божественная пропорция – бесценное сокровище, одно из двух сокровищ геометрии", – развивает эту же мысль Кеплер. Действительно, гармония может быть расшифрована лишь на ее собственном языке, отображенном фундаментальными принципами естествознания.

Цель дипломной работы – показать новые пути исследования природы гармонии: пути различные, основанные на рассмотрении разных объектов искусства и естествознания, но приводящие к взаимосвязанным выводам, хорошо согласованным с реальностью.

Раскрытие объективных законов гармонии формирует прочный фундамент мировоззренческого и профессионального отношения к творчеству и, следовательно, к жизни. Изучение и постижение законов гармонии способно направить творческую деятельность человека не в русло эклектики формотворчества, не в русло формирования моды в искусстве, а в русло созидания нового, созвучного объективным законам восприятия, которыми отображены законы гармонии в природе. В этом состоит одна из важнейших профессиональных и социальных задач воспитания и просвещения.

Теория чисел Фибоначчи: история и современность

Жизнь и научная карьера Леонардо Пизанского (Фибоначчи – сокращение от filius Bonacci – сын добродушного) теснейшим образом связана с развитием европейской культуры и науки.

В век Фибоначчи возрождение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих II, император (с 1220 года) "Священной Римской империи Германской Нации". Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства. Поэтому к преподаванию в основанном им Неаполитанском университете, наряду с христианскими учеными, он привлек арабов и евреев.

Столь любимые его дедом рыцарские турниры, на которых сражающиеся калечили друг друга на потеху публике, Фридрих II совсем не признавал. Вместо этого он культивировал гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.

На таких турнирах и заблистал талант Леонарда Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.

Впоследствии Фибоначчи пользовался неизменным покровительством Фридриха II. Это покровительство стимулировало выпуск научных трактатов Фибоначчи: обширнейшей "Книге абака", написанной в 1202 году, но дошедшей до нас во втором своем варианте, который относится к 1228 г.; "Практики геометрии"(1220 г.); "Книги квадратов"(1225 г.).

По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику, чуть ли не до времен Декарта (17 в.).

В "Практике геометрии" Фибоначчи применил к решению геометрических задач алгебраические методы. В "Книге квадрата" он решил некоторые задачи на неопределенные квадратные уравнения.

Наибольший интерес представляет для нас сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течение нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цифрами. В ней Фибоначчи впервые в Европе привел отрицательные числа, которые рассматривал, как "долг", дал приемы извлечения кубических корней, привел "числа Фибоначчи".

Сообщаемый в "Книге абака" материал поясняется на большом числе задач, составляющих значительную часть этого тракта. Рассмотрим одну из них:

"Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рожают кролики со второго месяца после своего рождения".

Ясно, что если считать пару кроликов новорожденными, то на 2-й месяц мы будем по прежнему иметь одну пару; на 3-й месяц – 1+1=2; на 4-й – 2+1=3 пары (ибо из двух имеющихся пар потомство дает лишь одна пара); на 5-й месяц – 3+2=5 пар (лишь два родившиеся на 3-й месяц пары дадут потомство на пятый месяц); на 6-й месяц – 5+3=8 пар (ибо потомство дадут только те пары, которые родились на 4-м месяце) и т. д.

Таким образом, если обозначить число пар кроликов, имеющихся на n-месяце через Fk, F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, F7=13, F8=21 и т. д. причем образование этих чисел регулируется общим законом:

Fn=Fn-1+Fn-2

При всех n>2, ведь число пар кроликов на n-м месяце равно числу Fn-1 пар кроликов на предшествующем месяце плюс число вновь родившихся пар, которое совпадает с числом Fn-2 пар кроликов, родившихся на (n-2) – ом месяце (ибо лишь эти пары кроликов дают потомство).

Числа Fn, образующие последовательность 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …называются числами Фибоначчи, а сама последовательность – последовательностью Фибоначчи.

Суть последовательности Фибоначчи заключается в том, что, после двух первых членов 1,1 каждое следующее число, получается сложением двух предыдущих.

Данная последовательность асимптотически стремится к некоторому постоянному соотношению (все медленнее и медленнее приближаясь к нему). Однако это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно десятичной дробью.

Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то превосходящая, то не достигающая его. Но даже затратив на это Вечность, невозможно узнать соотношение точно, до последней десятичной цифры. Кратко мы будем записывать его в виде 1.618

Специальные названия этому соотношению начали давать еще до того, как Лука Пачоли, средневековый математик, назвал его Божественной пропорцией. Среди его современных названий есть такие, как Золотое сечение, Золотое среднее и отношение вертящихся квадратов. Кеплер назвал это соотношение одним из "сокровищ геометрии". В алгебре общепринято его обозначение греческой буквой фи: Φ=1.618

Асимптотическое поведение последовательности, затухающие колебания ее соотношения около иррационального числа Φ могут стать более понятными, если показать отношения нескольких первых членов последовательности. В этом примере приведены отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее:

1:1 = 1.0000, что меньше фи на 0.6180

2:1 = 2.0000, что больше фи на 0.3820

3:2 = 1.5000, что меньше фи на 0.1180

5:3 = 1.6667, что больше фи на 0.0486

8:5 = 1.6000, что меньше фи на 0.0180

По мере нашего продвижения по суммационной последовательности Фибоначчи каждый новый член будет делить следующий с все большим и большим приближением к недостижимому Φ.

Ниже мы увидим, что отдельные числа из суммационной последовательности Фибоначчи можно увидеть в движениях цен на товары. Колебания соотношений около значения 1.618 на большую или меньшую величину мы обнаружим в Волновой теории Эллиотта, где они описываются Правилом чередования.

Человек подсознательно ищет Божественную пропорцию: она нужна для удовлетворения его потребности в комфорте.

При делении любого члена последовательности Фибоначчи на следующий за ним получается просто обратная к 1.618 величина (1: 1.618=0.618). Но это тоже весьма необычное, даже замечательное явление. Поскольку первоначальное соотношение – бесконечная дробь, у этого соотношения также не должно быть конца.

При делении каждого числа Фибоначчи на следующее за ним через одно, получаем число 0.382. Заметим еще, что 1:0.382=2.618

Подбирая, таким образом, соотношения, получаем основной набор коэффициентов Фибоначчи: 4.235,2.618,1.618,0.618,0.382,0.236. Упомянем также 0.5. Все они играют особую роль в природе, технике, искусстве и, в частности, в финансовом техническом анализе.

Теория чисел Фибоначчи выросла из знаменитой "задачи о кроликах", имеющей почти восьмисотлетнюю давность; числа Фибоначчи до сих пор остаются одной из самых увлекательных глав элементарной математики. Задачи, связанные с числами Фибоначчи, приводятся во многих популярных изданиях по математике, рассматриваются на занятиях школьных и студенческих математических кружков, предлагаются на математических олимпиадах.

Числа Фибоначчи проявили себя еще и в нескольких математических проблемах, среди которых в первую очередь следует назвать решение Ю. В. Матиясевичем десятой проблемы Гильберта и далеко не столь глубокую, но приобретшую широкую известность теорию поиска экстремума унимодальной функции, построенную впервые, по-видимому, Дж. Кифером.

Наконец, было установлено довольно большое количество ранее неизвестных свойств чисел Фибоначчи, и к самим числам сегодня существенно возрос интерес. Значительное число связанных с математикой людей в различных странах приобщилось к благородному хобби "фибоначчизма". Наиболее убедительным свидетельством этому может служить журнал "The Fibonacci Quarterly", издаваемый в США с 1963 г.

Пропорции Фибоначчи благодаря усилиям многих энтузиастов обнаруживаются в самых неожиданных областях знания, через золотое сечение удается связать между собой совершенно разные теории и явления, что свидетельствует о фундаментальной роли теории чисел Фибоначчи в естествознании и в гуманитарных науках.

Дата: 2019-12-22, просмотров: 337.