Свойства математического ожидания.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

1. Математическое ожидание неслучайной величины с равно самой величине с:

M[c] = c. (6.4)

Доказательствово: представим величину с как случайную величину, которая принимает одно и то же значение, с вероятностью р=1:

M[c]=c∙1=c.

2. При умножении СВ Х на неслучайную величину с не ту же самую величину увеличится ее математическое ожидание:

M[c×X] = c×M[X]. (6.5)

Доказательство:

3. При прибавлении к СВ Х неслучайной величины с к ее математическому ожиданию прибавляется такая же величина:

(6.6)

Доказательство: следует из свойств 1 и 3.

4. Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий:

M[X+Y] = M[X]+M[Y]. (6.6)

Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной случайной величины.

Она характеризует степень разброса значений случайной величины относительно ее математического ожидания, т.е. ширину диапазона значений.

Расчетные формулы:

(6.9)

Дисперсия может быть вычислена через второй начальный момент:

(6.10)

Дисперсия случайной величины характеризует степень рассеивания (разброса) значений случайной величины относительно ее математического ожидания. Дисперсия СВ (как дискретной, так и непрерывной) есть неслучайная (постоянная) величина.

Дисперсия СВ имеет размерность квадрата случайной величины. Для наглядности характеристики рассеивания пользуются величиной, размерность которой совпадает с размерностью СВ.

Средним квадратическим отклонением (СКО) СВ X называется характеристика

. (6.11)

СКО измеряется в тех же физических единицах, что и СВ, и характеризует ширину диапазона значений СВ.

Свойства дисперсии

Дисперсия постоянной величины с равна нулю.

Доказательство: по определению дисперсии

При прибавлении к случайной величине Х неслучайной величины с ее дисперсия не меняется.

D[X+c] = D[X].

Доказательство: по определению дисперсии

(6.12)

3. При умножении случайной величины Х на неслучайную величину с ее дисперсия умножается на с2.

Доказательство: по определению дисперсии

. (6.13)

Для среднего квадратичного отклонения это свойство имеет вид:

(6.14)

Действительно, при ½С½>1 величина сХ имеет возможные значения (по абсолютной величине), большие, чем величина Х. Следовательно, эти значения рассеяны вокруг математического ожидания М[сХ] больше, чем возможные значения Х вокруг М[X], т.е. . Если 0<½с½<1, то .

Правило 3s. Для большинства значений случайной величины абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения, или, другими словами, практически все значения СВ находятся в интервале:

[ m - 3s; m + 3s; ].(6.15)

Коэффициент корреляции.

Величина cov(x;h) зависит от единиц измерения, в которых выражаются x и h. (Например, пусть x и h—линейные размеры некоторой детали. Если за единицу измерения принять 1 см, то cov(x;h) примет одно значение, а если за единицу измерения принять 1 мм, то cov(x;h) примет другое, большее значение (при условии cov(x;h)¹0)). Поэтому cov(x;h) неудобно принимать за показатель связи.

Чтобы иметь дело с безразмерным показателем, рассмотрим случайные величины

;

Такие случайные величины называются нормированными отклонениями случайных величин x и h.

Каждая из случайных величин x* и h* имеет центром (математическое ожидание) нуль и дисперсию, равную единице. Приведём доказательство для случайной величины x*.

Ковариация x* и h* называется коэффициентом корреляции случайных величин x и h (обозначается rxh).

Для независимых x и h rxh=0, так как в этом случае cov(x;h)=0

Обратного заключения сделать нельзя. Случайные величины могут быть связаны даже функциональной зависимостью (каждому значению одной случайной величины соответствует единственное значение другой случайной величины), но коэффициент их корреляции будет равен нулю.

Свойства коэффициента корреляции.

1. –1£rx h£1

2. Если rx h=1, то h=kx+b, где k и b—константы, k>0.

3. Если rx h= –1, то h= kx+b, где k<0.

4. Если h=kx+b, (k ¹0) или x=k 1h+b1, то

rx h=1 при k>0

rx h= – 1 при k<0.

Коэффициент корреляции rx h достигает своих предельных значений –1 и 1 в том и только в том случае, если совместное распределение x и h все концентрируется на некоторой прямой в плоскости x; h, то есть между x и h имеется такая линейная зависимость.

Если êrxhê<1, то такой линейной зависи­мости нет. Все же по мере приближения êrxhê к единице совместное распреде­ление x; h имеет тенденцию кон­центри­роваться вблизи некото­рой прямой линии и величину êrxhê можно считать мерой близости к полной линейной зависимости между x и h.


 


Дата: 2019-07-23, просмотров: 367.