Эксплуатация скважин центробежными погружными насосами
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Содержание

 

Введение

1. Эксплуатация скважин центробежными погружными насосами

1.1. Установки погружных центробежных насосов (УЭЦН) для добычи нефти из скважин

1.2 Насосы погружные центробежные модульные типа ЭЦНД

1.3 Газосепараторы типа МНГБ

2. Эксплуатация скважин погружными центробежными электронасосами

2.1 Общая схема установки погружного центробежного электронасоса

2.2 Погружной насосный агрегат

2.3 Элементы электрооборудования установки

2.4 Установка ПЦЭН специального назначения

2.5 Определение глубины подвески ПЦЭН

3. Подбор погружного центробежного насоса

4. Охрана труда

Заключение

Список литературы

 



Введение

 

В состав любой скважины входят два типа машин: машины - орудия (насосы) и машины - двигатели (турбины).

Насосами в широком смысле называют машины для сообщения энергии рабочей среде. В зависимости от рода рабочего тела, различают насосы для капельных жидкостей (насосы в узком смысле) и насосы для газов (газодувки и компрессоры). В газодувках происходит незначительное изменение статического давления, и изменением плотности среды можно пренебречь. В компрессорах при значительных изменениях статического давления проявляется сжимаемость среды.

Остановимся подробнее на насосах в узком смысле этого слова -насосах для жидкости. Преобразуя механическую энергию приводного двигателя в механическую энергию движущейся жидкости, насосы поднимают жидкость на определенную высоту, подают ее на необходимое расстояние в горизонтальной плоскости или заставляют циркулировать в какой-либо замкнутой системе. По принципу действия насосы подразделяют на динамические и объемные.

В динамических насосах жидкость движется под силовым воздействием в камере постоянного объема, сообщающейся с подводящими и отводящими устройствами.

В объемных насосах движение жидкости происходит путем всасывания и вытеснения жидкости за счет циклического изменения объема в рабочих полостях при движении поршней, диафрагм, пластин.

Основными элементами центробежного насоса являются рабочее колесо (РК) и отвод. Задачей РК является повышение кинетической и потенциальной энергии потока жидкости за счет его разгона в лопаточном аппарате колеса центробежного насоса и повышения давления. Основной функцией отвода являются отбор жидкости от рабочего колеса, снижение скорости потока жидкости с одновременным превращением кинетической энергии в потенциальную (повышение давления), передача потока жидкости к следующему рабочему колесу или в нагнетательный патрубок.

Из-за малых габаритных размеров в установках центробежных насосов для добычи нефти отводы всегда выполняются в виде лопаточных направляющих аппаратов (НА). Конструкция РК и НА, а также характеристика насоса зависит от планируемой подачи и напора ступени. В свою очередь подача и напор ступени зависят от безразмерных коэффициентов: коэффициент напора, коэффициент подачи, коэффициент быстроходности (используется наиболее часто).

В зависимости от коэффициента быстроходности меняются конструкция и геометрические параметры рабочего колеса и направляющего аппарата, а также характеристика самого насоса.

Для тихоходных центробежных насосов (малые значения коэффициента быстроходности - до 60-90) характерным является монотонно снижающаяся линия напорной характеристики и постоянно увеличивающаяся мощность насоса при увеличении подачи. При увеличении коэффициента быстроходности (диагональные рабочие колеса, коэффициент быстроходности составляет более 250-300) характеристика насоса теряет свою монотонность и получает провалы и горбы (линии напора и мощности). Из-за этого для быстроходных центробежных насосов обычно не применяется регулирование подачи с помощью дросселирования (установки штуцера).

 



Газосепараторы типа МНГБ

 

Газосепараторы устанавливаются на входе насоса вместо входного модуля и предназначены для уменьшения количества свободного газа в пластовой жидкости, поступающего на вход погружного центробежного насоса. Газосепараторы снабжены защитной гильзой, предохраняющей корпус газосепаратора от гидрообразивного износа.

Все газосепараторы, за исключением исполнения ЗМНГБ, выпускаются с осевыми опорами вала из керамики.

 

Рисунок 2. Газосепаратор типа МНГБ

 

В газосепараторах исполнения ЗМНГБ осевая опора вала не устанавливается, а вал газосепаратора опирается на вал гидрозащиты.

Газосепараторы с буквой "К" в обозначении выпускаются в коррозионностойком исполнении. Технические характеристики газосепораторов приведены в таблице 3.

 

Таблица 3. Технические характеристики

Без промежуточных опор вала

Типоразмер насоса Подача макс, однофазной жидкости м3/сут. Макс, доп. Мощ ность на валу, кВт Диаметр корпуса, мм Диаметр вала, мм Масса, кг Длина, мм
МНГ Б5 250

76

92

17

27,5 717
ЗМНГ Б5

300

27 848
ЗМНГБ5-02 95 20 27,5 848
МНГ Б5А

500

135(180 с плавным пуском и валом

К-онель)

103

22

28,5

752

МНГ Б5А-К
МНГ Б5А 33 848

С промежуточными опорами вала

МНД Б5-04 250 76 92 17 28 717


Погружной насосный агрегат

 

Насосный агрегат (рисунок 5) состоит из насоса, узла гидрозащиты, погружного электродвигателя ПЭД, компенсатора, присоединяемого к нижней части ПЭДа.

Насос состоит из следующих деталей: головки 1 с шаровым обратным клапаном для предупреждения слива жидкости и НКТ при остановках; верхней опорной пяты скольжения 2, воспринимающей частично осевую нагрузку из-за разности давлений на входе и выходе насоса; верхнего подшипника скольжения 3, центрирующего верхний конец вала; корпуса насоса 4 направляющих аппаратов 5, которые опираются друг на друга и удерживаются от вращения общей стяжкой в корпусе 4; рабочих колес 6; вала насоса 7, имеющего продольную шпонку, на которой насаживаются рабочие колеса со скользящей посадкой. Ваг проходит и через направляющий аппарат каждой ступени и центрируется в нем втулкой рабочего колеса, как в подшипнике нижнего подшипника скольжения 8; основания 9, закрытого приемной сеткой и имеющего в верхней части круглые наклонные отверстия для подвода жидкости к нижнему рабочему колесу; концевого подшипника скольжения 10. В насосах ранних конструкций, имеющихся еще в эксплуатации, устройство нижней части иное. На всей длине основания 9 размещается сальник и: свинцово-графитовых колец, разделяющий приемную часть насоса и внутренние полости двигателя и гидрозащиты. Ниже сальника смонтирован трехрядный радиалыно-упорный шариковый подшипник, смазываемый густым маслом, находящимся под избыточным, по отношению к внешнему, некоторым давлением (0,01 - 0,2 МПа).

 


Рисунок 5. Устройство погружного центробежного агрегата

а - центробежный насос; б - узел гидрозащиты; в - погружной электродвигатель; г – компенсатор.

 

В современных конструкциях ЭЦН в узле гидрозащиты не имеется избыточного давления, поэтому утечки жидкого трансформаторного масла, которым заполнен ПЭД, меньше, и необходимость в свинцово-графитовом сальнике отпала.

Полости двигателя и приемной части разделяет простым торцовым уплотнением, давления по обе стороны которого одинаковые. Длина корпуса насоса обычно не превышает 5,5 м. Когда же нужное число ступеней (в насосах, развивающих большие напоры) разместить в одном корпусе не удается, их размещают в два или три отдельных корпуса, составляющих самостоятельные секции одного насоса, которые состыковываются вместе при спуске насоса в скважину.

Узел гидрозащиты - самостоятельный узел, присоединяемый к ПЦЭН болтовым соединением (на рисунок узел, как и сам ПЦЭН, показан с транспортировочными заглушками, герметизирующими торцы узлов).

Верхний конец вала 1 соединяется шлицевой муфтой с нижним концом вала насоса. Легкое торцевое уплотнение 2 разделяет верхнюю полость, в которой может быть скважинная жидкость, от полости ниже уплотнения, которая заполнена трансформаторным маслом, находящимся, как и скважинная жидкость, под давлением, равным давлению на глубине погружения насоса. Ниже торцевого уплотнения 2 располагается подшипник скользящего трения, а еще ниже - узел 3 - опорная пята, воспринимающая осевое усилие вала насоса. Опорная пята скольжения 3 работает в жидком трансформаторном масле.

Ниже размещается второе торцевое уплотнение 4 для более надежной герметизации двигателя. Оно конструктивно не отличается от первого. Под ним располагается резиновый мешок 5 в корпусе 6. Мешок герметично разделяет две полости: внутреннюю полость мешка, заполненного трансформаторным маслом, и полость между корпусом 6 и самим мешком, в которую имеет доступ внешняя скважинная жидкость через обратный клапан 7.

Скважинная жидкость через клапан 7 проникает в полость корпуса 6 и сжимает резиновый мешок с маслом до давления, равного внешнему. Жидкое масло по зазорам вдоль вала проникает к торцевым уплотнениям и вниз к ПЭДу.

Разработаны две конструкции устройств гидрозащиты. Гидрозащита ГД отличается от описанной гидрозащиты Т наличием на валу малой турбинки, создающей повышенное давление жидкого масла во внутренней полости резинового мешка 5.

Внешняя полость между корпусом 6 и мешком 5 заполняется густым маслом, питающим шариковый радиально-упорный подшипник ПЦЭН прежней конструкции. Таким образом, узел гидрозащиты ГД усовершенствованной конструкции пригоден для использования в комплекте с широко распространенными на промыслах ПЦЭН прежних типов. Ранее применялась гидрозащита, так называемый протектор поршневого типа, в которой избыточное давление на масло создавалось подпружиненным поршнем. Новые конструкции ГД и Г оказались более надежными и долговечными. Температурные изменения объема масла при его нагревании или охлаждении компенсируются с помощью присоединения к нижней части ПЭДа резинового мешка - компенсатора (рисунок 5).

Для привода ПЦЭН служат специальные вертикальные асинхронные маслозаполненные двухполюсные электродвигатели (ПЭД). Электродвигатели насоса делятся на 3 группы: 5; 5А и 6.

Поскольку вдоль корпуса электродвигателя, в отличие от насоса, электрокабель не проходит, диаметральные размеры ПЭДов названных групп несколько больше, чем у насосов, а именно: группа 5 имеет максимальный диаметр 103 мм, группа 5А - 117 мм и группа 6 - 123 мм.

В маркировку ПЭД входит номинальная мощность (кВт) и диаметр; например, ПЭД65-117 означает: погружной электродвигатель мощностью 65 кВт с диаметром корпуса 117 мм, т. е. входящий в группу 5А.

Малые допустимые диаметры и большие мощности (до 125 кВт) вынуждают делать двигатели большой длины - до 8 м, а иногда и больше. Верхняя часть ПЭДа соединяется с нижней частью узла гидрозащиты с помощью болтовых шпилек. Валы стыкуются шлицевыми муфтами.

Верхний конец вала ПЭДа (рисунок ) подвешен на пяте скольжения 1, работающей в масле. Ниже размещается узел кабельного ввода 2. Обычно этот узел представляет собой штекерный кабельный разъем. Это одно из самых уязвимых мест в насосе, из-за нарушения изоляции которого установки выходят из строя и требуют подъема; 3 - выводные провода обмотки статора; 4 - верхний радиальный подшипник скользящего трения; 5 - разрез торцевых концов обмотки статора; 6 - секция статора, набранная из штампованных пластин трансформаторного железа с пазами для продергивания проводов статора. Секции статора разделены друг от друга немагнитными пакетами, в которых укрепляются радиальные подшипники 7 вала электродвигателя 8. Нижний конец вала 8 центрируется нижним радиальным подшипником скользящего трения 9. Ротор ПЭДа также состоит из секций, собранных на валу двигателя из штампованных пластин трансформаторного железа. В пазы ротора типа беличьего колеса вставлены алюминиевые стержни, закороченные токопроводящими кольцами, с обеих сторон секции. Между секциями вал двигателя центрируется в подшипниках 7. Через всю длину вала двигателя проходит отверстие диаметром 6 - 8 мм для прохождения масла из нижней полости в верхнюю. Вдоль всего статора также имеется паз, через который может циркулировать масло. Ротор вращается в жидком трансформаторном масле с высокими изолирующими свойствами. В нижней части ПЭДа имеется сетчатый масляный фильтр 10. Головка 1 компенсатора (см. рисунок , г), присоединяется к нижнему концу ПЭДа; перепускной клапан 2 служит для заполнения системы маслом. Защитный кожух 4 в нижней части имеет отверстия для передачи внешнего давления жидкости на эластичный элемент 3. При охлаждении масла его объем уменьшается и скважинная жидкость через отверстия заходит в пространство между мешком 3 и кожухом 4. При нагревании мешок расширяется, и жидкость через те же отверстия выходит из кожуха.

ПЭДы, применяемые для эксплуатации нефтедобывающих скважин, имеют мощности обычно от 10 до 125 кВт.

Для поддержания пластового давления применяются специальные погружные насосные агрегаты, укомплектованные ПЭДами мощностью 500 кВт. Напряжение питающего тока в ПЭДах колеблется от 350 до 2000 В. При высоких напряжениях удается пропорционально уменьшить ток при передаче той же мощности, а это позволяет уменьшить сечение токопроводящих жил кабеля, а следовательно, поперечные габариты установки. Это особенно важно при больших мощностях электродвигателя. Скольжение ротора ПЭДа номинальное - от 4 до 8,5 %, к. п. д. - от 73 до 84 %, допустимые температуры окружающей среды - до 100 °С.

При работе ПЭДа выделяется много теплоты, поэтому для нормальной работы двигателя требуется охлаждение. Такое охлаждение создается за счет непрерывного протекания пластовой жидкости по кольцевому зазору между корпусом электродвигателя и обсадной колонной. По этой причине отложения парафина в НКТ при работе насосов всегда значительно меньше, чем при других способах эксплуатации.

В производственных условиях случается временное обесточивание силовых линий из-за грозы, обрыва проводов, из-за их обледенения и пр. Это вызывает остановку УПЦЭН. При этом под влиянием стекающего из НКТ через насос столба жидкости вал насоса и статор начинают вращаться в обратном направлении. Если в этот момент подача электроэнергии будет восстановлена, то ПЭД начнет вращаться в прямом направлении, преодолевая силу инерции столба жидкости и вращающихся масс.

Пусковые токи при этом могут превысить допустимые пределы, и установка выйдет из строя. Чтобы этого не случилось, в выкидной части ПЦЭН устанавливается шаровой обратный клапан, препятствующий сливу жидкости из НКТ.

Обратный клапан обычно размещается в головке насоса. Наличие обратного клапана осложняет подъем НКТ при ремонтных работах, так как в этом случае трубы поднимают и развинчивают с жидкостью. Кроме того, это опасно в пожарном отношении. Для предотвращения таких явлений выше обратного клапана в специальной муфте делается сливной клапан. В принципе сливной клапан - это муфта, в боковую стенку которой вставлена горизонтально короткая бронзовая трубка, запаянная с внутреннего конца. Перед подъемом в НКТ бросается металлический короткий дротик. От удара дротика бронзовая трубка отламывается, в результате чего боковое отверстие в муфте открывается и жидкость из НКТ сливается.

Разработаны и другие приспособления для слива жидкости, устанавливаемые над обратным клапаном ПЦЭН. К ним относятся так называемые суфлеры, позволяющие измерять межтрубное давление на глубине спуска насоса скважинным манометром, спускаемым в НКТ, и устанавливающие сообщение межтрубного пространства с измерительной полостью манометра.

Следует заметить, что двигатели чувствительны к системе охлаждения, которая создается потоком жидкости между обсадной колонной и корпусом ПЭДа. Скорость этого потока и качество жидкости влияют на температурный режим ПЭДа. Известно, что вода имеет теплоемкость 4,1868 кДж/кг-°С, тогда как чистая нефть 1,675 кДж/кг-°С. Поэтому при откачке обводненной продукции скважины условия охлаждения ПЭДа лучше, чем при откачке чистой нефти, а его перегрев приводит к нарушению изоляции и выходу двигателя из строя. Поэтому изоляционные качества применяемых материалов влияют на длительность работы установки. Известно, что термостойкость некоторой изоляции, применяемой для обмоток двигателя, доведена уже до 180 °С, а рабочие температуры до 150 °С. Для контроля за температурой разработаны простые электрические температурные датчики, передающие на станцию управления информацию о температуре ПЭДа по силовому электрическому кабелю без применения дополнительной жилы. Аналогичные устройства имеются для передачи на поверхность постоянной информации о давлении на приеме насоса. При аварийных состояниях станция управления автоматически отключает ПЭД.




Охрана труда

 

На предприятиях составляется и утверждается главным инженером график проведения проверки герметичности фланцевых соединений, арматуры и других источников возможных выделений сероводорода.

Для перекачки сероводородсодержащих сред должны использоваться насосы с двойным торцовым уплотнением или с электромагнитными муфтами.

Сточные воды установок подготовки нефти, газа и газоконденсата должны подвергаться очистке, а при содержании сероводорода и других вредных веществ выше ПДК – нейтрализации.

До вскрытия и разгерметизации технологического оборудования необходимо осуществлять мероприятия по дезактивации пирофорных отложений.

Перед осмотром и ремонтом, ёмкости и аппараты должны быть пропарены и промыты водой для предотвращения самовозгорания природных отложений. По дезактивации пирофорных соединений должны осуществляться мероприятия с применением пенных систем на основе ПАВ либо других методов, отмывающих системы аппаратов от этих соединений.

Во избежание самовозгорания природных отложений, при ремонтных работах, все узлы и детали технологического оборудования должны быть смочены техническими моющими составами (ТМС).

При наличии на объектах добычи газо- и продукта с большим геометрическим объёмом, необходимо секционировать их путём автоматических задвижек, обеспечивающих наличие в каждой секции при нормальном рабочем режиме не более 2000 – 4000 м3 сероводорода.

На установках в помещениях и на промплощадках, где возможно выделение сероводорода в воздух рабочей зоны, должен осуществляться постоянный контроль воздушной среды и сигнализации опасных концентраций сероводорода.

Место установки датчиков стационарных автоматических газосигнализаторов определяется проектом обустройства месторождения с учётом плотности газов, параметров изменяемого оборудования, его размещения и рекомендации поставщиков.

Контроль за состоянием воздушной среды на территории промысловых объектов должен быть автоматическим с выводом датчиков на диспетчерский пункт.

Замеры концентрации сероводорода газоанализаторами на объекте должны проводиться по графику предприятия, а в аварийных ситуациях – газоспасательной службой с занесением результатов в журнал.

 



Заключение

 

Установки погружных центробежных насосов (УЭЦН) для добычи нефти из скважин нашли широкое применение на скважинах с большим дебитом, так насос и электродвигатель подобрать под любую большую производительность не представляет большего труда.

Промышленность России выпускает насосы с широким диапозоном производительности, тем более что, производительность и высоту подъёма жидкости от забоя на поверхность можно регулировать меняя число секций насоса.

Использование центробежных насосов возможно при различных величинах подач и напоров по причине «гибкости» характеристики, однако практически подача насоса должна находиться внутри «рабочей части» или «рабочей зоны» характеристики насоса. Эти рабочие части характеристики должны обеспечивать наиболее экономичные режимы эксплуатации установок и минимальный износ деталей насосов.

Компания «Борец» производит полнокомплектные установки погружных электроцентробежных насосов различных вариантов комплектации, отвечающие мировым стандартам, предназначенные для эксплуатации в любых условиях, в том числе в осложнённых с повышенным содержанием мехпримесей, газосодержания и температуры перекачиваемой жидкости, рекомендуется для скважин с высоким газовым фактором и нестабильным динамическим уровнем, успешно противостоят отложению солей.



Список литературы

 

1. Абдулин Ф.С. Добыча нефти и газа: - М.: Недра, 1983. - С.140

2. Актабиев Э.В., Атаев О.А. Сооружения компрессорных и нефтеперекачивающих станций магистральных трубопроводов: - М.: Недра, 1989. – С.290

3. Алиев Б.М. Машины и механизмы для добычи нефти: - М.: Недра, 1989. – С.232

4. Алиева Л. Г., Алдашкин Ф. И. Бухгалтерский учет в нефтяной и газовой промышленности: - М.: Тема, 2003. – С.134

5. Березин В.Л., Бобрицкий Н.В. и др. Сооружение и ремонт газонефтепроводов: - М.: Недра, 1992. – С.321

6. Бородавкин П.П., Зинкевич А.М. Капитальный ремонт магистральных трубопроводов: - М.: Недра, 1998. – С.149

7. Бухаленко Е.И. и др. Монтаж и обслуживание нефтепромыслового оборудования: - М.: Недра, 1994. – С.195

8. Бухаленко Е.И. Нефтепромышленное оборудование: - М.: Недра, 1990. – С.200

9. Бухаленко Е.И. Справочник по нефтепромысловому оборудованию: - М.: Недра, 1990. – С.120

10. Вирнавский А.С. Вопросы эксплуатации нефтяных скважин: - М.: Недра, 1997. - С.248

11. Марицкий Е.Е., Миталев И.А. Нефтяное оборудование. Т. 2: – М.: Гипронефтемаш, 1990. – С.103

12. Марков А.А. Справочник по добыче нефти и газа: - М.: Недра, 1989. – С.119

13. Махмудов С.А. Монтаж, эксплуатация и ремонт скважных насосных установок: - М.: Недра, 1987. – С.126

14. Михайлов К.Ф. Справочник механика нефтепромыслов: - М.: Гостехиздание, 1995. – С.178

15. Мищенко Р.И. Нефтепромысловые машины и механизмы: - М.: Гостехиздание, 1984. - С.254

16. Молчанов А.Г. Нефтепромысловые машины и механизмы: - М.: Недра, 1985. – С.184

17. Муравьёв В.М. Эксплуатация нефтяных и газовых скважин: - М.: Недра, 1989. - С. 260

18. Овчинников В.А. Нефтяное оборудование, т.II: - М.: ВННи нефтемашин, 1993. – С.213

19. Раабен А.А. Ремонт и монтаж нефтепромыслового оборудования: - М.: Недра, 1987. - С.180

20. Руденко М.Ф. Разработка и эксплуатация нефтяных месторождений: - М.: Труды МИНХ и ГТ, 1995. – С.136

Содержание

 

Введение

1. Эксплуатация скважин центробежными погружными насосами

1.1. Установки погружных центробежных насосов (УЭЦН) для добычи нефти из скважин

1.2 Насосы погружные центробежные модульные типа ЭЦНД

1.3 Газосепараторы типа МНГБ

2. Эксплуатация скважин погружными центробежными электронасосами

2.1 Общая схема установки погружного центробежного электронасоса

2.2 Погружной насосный агрегат

2.3 Элементы электрооборудования установки

2.4 Установка ПЦЭН специального назначения

2.5 Определение глубины подвески ПЦЭН

3. Подбор погружного центробежного насоса

4. Охрана труда

Заключение

Список литературы

 



Введение

 

В состав любой скважины входят два типа машин: машины - орудия (насосы) и машины - двигатели (турбины).

Насосами в широком смысле называют машины для сообщения энергии рабочей среде. В зависимости от рода рабочего тела, различают насосы для капельных жидкостей (насосы в узком смысле) и насосы для газов (газодувки и компрессоры). В газодувках происходит незначительное изменение статического давления, и изменением плотности среды можно пренебречь. В компрессорах при значительных изменениях статического давления проявляется сжимаемость среды.

Остановимся подробнее на насосах в узком смысле этого слова -насосах для жидкости. Преобразуя механическую энергию приводного двигателя в механическую энергию движущейся жидкости, насосы поднимают жидкость на определенную высоту, подают ее на необходимое расстояние в горизонтальной плоскости или заставляют циркулировать в какой-либо замкнутой системе. По принципу действия насосы подразделяют на динамические и объемные.

В динамических насосах жидкость движется под силовым воздействием в камере постоянного объема, сообщающейся с подводящими и отводящими устройствами.

В объемных насосах движение жидкости происходит путем всасывания и вытеснения жидкости за счет циклического изменения объема в рабочих полостях при движении поршней, диафрагм, пластин.

Основными элементами центробежного насоса являются рабочее колесо (РК) и отвод. Задачей РК является повышение кинетической и потенциальной энергии потока жидкости за счет его разгона в лопаточном аппарате колеса центробежного насоса и повышения давления. Основной функцией отвода являются отбор жидкости от рабочего колеса, снижение скорости потока жидкости с одновременным превращением кинетической энергии в потенциальную (повышение давления), передача потока жидкости к следующему рабочему колесу или в нагнетательный патрубок.

Из-за малых габаритных размеров в установках центробежных насосов для добычи нефти отводы всегда выполняются в виде лопаточных направляющих аппаратов (НА). Конструкция РК и НА, а также характеристика насоса зависит от планируемой подачи и напора ступени. В свою очередь подача и напор ступени зависят от безразмерных коэффициентов: коэффициент напора, коэффициент подачи, коэффициент быстроходности (используется наиболее часто).

В зависимости от коэффициента быстроходности меняются конструкция и геометрические параметры рабочего колеса и направляющего аппарата, а также характеристика самого насоса.

Для тихоходных центробежных насосов (малые значения коэффициента быстроходности - до 60-90) характерным является монотонно снижающаяся линия напорной характеристики и постоянно увеличивающаяся мощность насоса при увеличении подачи. При увеличении коэффициента быстроходности (диагональные рабочие колеса, коэффициент быстроходности составляет более 250-300) характеристика насоса теряет свою монотонность и получает провалы и горбы (линии напора и мощности). Из-за этого для быстроходных центробежных насосов обычно не применяется регулирование подачи с помощью дросселирования (установки штуцера).

 



Эксплуатация скважин центробежными погружными насосами

Дата: 2019-04-22, просмотров: 616.