Свет естественный и поляризованный. Закон Малюса. Закон Брюстера
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Естественный свет - оптическое излучение с быстро и беспорядочно изменяющимися направлениями напряжённости электро-магнитного поля, причём все направления колебаний, перпендикулярные к световым лучам, равновероятны.

Поляризованный – свет, в котором направления колебаний светового вектора упорядочены каким-либо образом.

Частично-поляризованный свет – если в результате каких-либо внешних воздействий появляется преимущественное направление колебаний вектора Е.

Плоскополяризованный – если колебания вектора Е происходят только в одной плоскости.

 

Интенсивность света после поляризатора определяется законом Малюса.

I=I0*cos2α

I0-интенсивность до поляризатора; I – интенсивность после поляризатора; α – угол между вектором Е и плоскостью поляризации.

 

 

Пусть на 2 поляризатора падает естественный свет.

I1=1/2*Iест

I2=1/2*Iест*cos2α=I1*cos2α

Степень поляризации луча Δ=(Imax-Imin)/(Imax*Imin)

 

Закон Малюса отражает прямую зависимость между интенсивностью естественного света и интенсивностью линейного поляризованного света, прошедшего через специальные поляроиды. Их изготавливают из кристаллов турмалина.

Формулировка Закона Малюса звучит таким образом: когда на анализатор падает полностью плоский поляризованный свет, интенсивность света, передаваемого анализатором, прямо пропорциональна квадрату косинуса угла между осями передачи анализатора и поляризатором.

Если два поляроида поставлены на пути лучей так, что их плоскости пропускания параллельны друг другу, то колебания электромагнитного поля световой волны, пропущенные первым из них (поляризатором Р), будут пропущены и вторым (анализатором А). Наоборот, при взаимно перпендикулярном расположении плоскостей пропускания скрещенных поляроидов колебания, пропущенные одним из них, будут задержаны вторым. Таким образом пропускание света парой поляроидов зависит от угла между их плоскостями пропускания (рис. 5 а).

Из рисунка 5 б) видно, что амплитудные значения напряженности светового вектора связаны между собой:

ЕА = Ер cos α. (1)

А так как интенсивность света I ~ E2 , то

I = I0 • cos2 α, (2)

где Iо - интенсивность поляризованного света, падающего на анализатор, I - интенсивность поляризованного света, прошедшего через анализатор.

Формула (2) является выражением закона Малюса: интенсивность света I, выходящего из анализатора, пропорциональна квадрату косинуса угла α между направлением плоскостей пропускання вектора Е поляризатора и анализатора.

Для прозрачных поляроидов поляризатор Р пропускает 50% интенсивности естественного света, тогда закон Малюса можно также записать для естественного света

. (3)

 

БРЮСТЕРА ЗАКОН, соотношение между показателем преломления n диэлектрика и таким углом падения на него неполяризованного света, при котором отражённый от поверхности диэлектрика свет полностью поляризован. При этом отражается только компонента Es электрического вектора световой волны, перпендикулярная плоскости падения (т. е. параллельная поверхности раздела). Компонента Ер, лежащая в плоскости падения, не отражается, а преломляется (рис.). Это происходит при условии tgφБ = n. Угол φБ называется углом Брюстера. Т. к. по закону преломления sinφБ/sinψ = n, где ψ - угол преломления, из Брюстера закона следует, что cosφБ = sinψ или φБ + ψ = 90°, т. е. угол между отражённым и прелом­лённым лучами равен 90°. Закон установлен Д. Брюстером в 1815 году.

Физическое истолкование Брюстера закона состоит в следующем. Электрическое поле падающей волны ЕПАД вызывает в диэлектрике колебания электронов в направлении, совпадающем с направлением электрического вектора преломлённой волны ЕПРЕЛ. Эти колебания возбуждают на поверхности раздела отражённую волну ЕОТР. Но линейно колеблющийся электрон не излучает в направлении колебаний, таким образом, в отражённой волне будут только колебания электрического поля (ES)ОТР в плоскости, перпендикулярной плоскости падения.

Брюстера закон выполняется не очень строго: при падении света под углом φБ отражённый свет обладает слабой эллиптической поляризацией, а это означает, что он содержит и компоненту Ер. Отклонение от Брюстера закона объясняется наличием тонкого переходного слоя на отражающей границе раздела сред, где дипольные молекулы диэлектрика ориентированы иначе, чем внутри его.

38. Поляриметр – его устройство и принцип работы. Использование поляриметра для определения концентраций оптически активных веществ. Законы преломления света. Рефрактометр – его устройство и назначение.

Метод, применяемый при качественном и количественном анализе различных веществ с помощью поляриметра, называется поляриметрией. Он широко используется в медицине и биологии (например, для определения оптической активности сывороточных белков с целью диагностики рака), в клинической практике (например, для количественного определения содержания сахара в моче). Поляриметр, применяемый для этой цели, называется сахариметром.

Описание установки.

В работе используется поляриметр портативный П-161, внешний вид которого изображен на рисунке 4. Оптическая схема прибора изображена на рисунке 5.

Источником света в поляриметре может являться лампа накаливания или солнечный свет, направляемый при помощи зеркальца. Свет от источника падает на светофильтр Ф и объектив О. Полученный монохроматический свет проходит через поляризатор П, кювету Т с раствором и анализатор А. В качестве анализатора и поляризатора в приборе используются поляроиды. После анализатора свет проходит через объектив Об и окуляр Ок зрительной трубы сахариметра, которая служит для визуального наблюдения поля зрения.

Вследствие адаптации глаза визуально трудно оценивать абсолютную освещенность. В то же время легко сравнивать освещенность различных частей поля зрения. Для разделения поля зрения на части в сахариметре непосредственно за поляризатором расположена тонкая кварцевая пластинка К, через которую проходит средняя часть пучка поляризованного света, вышедшего из поляризатора.

В результате введения кварцевой пластинки поле зрения поляриметра оказывается разделенным на три части. Средняя часть освещается светом, прошедшим через поляризатор, кварцевую пластинку и анализатор, а две крайние части поля зрения - светом, прошедшим через поляризатор и анализатор. Так как кварц является оптически активным веществом, то после прохождения поляризованного света через пластинку его плоскость поляризации поворачивается на некоторый угол (рис.6).

Поворачивая анализатор, можно получить равномерно освещенное поле зрения. Это будет происходить при двух положениях анализатора: 1) плоскость АА анализатора совпадает с биссектрисой угла между направлениями колебаний в средней и крайней частях поля зрения (рис.7,а); 2) плоскость анализатора перпендикулярна биссектрисе угла между направлениями колебаний (рис.7,б). В одном случае яркость поля зрения будет больше, в другой - меньше. При работе с сахариметром следует уравнивать части поля зрения при меньшей яркости.

Если установить анализатор на равную освещенность всех частей поля зрения, а затем поместить между поляризатором и анализатором трубку с раствором сахара, то равенство яркостей средней и крайней частей поля зрения нарушиться. Это происходит вследствие того, что во всех частях поля зрения плоскость колебаний светового вектора повернется на один и тот же угол a (рис.8). Для восстановления равенства освещенностей необходимо повернуть анализатор на этот же угол a, равный углу поворота плоскости поляризации света при прохождении им раствора сахара.

Преломление света — явление, при котором луч света, переходя из одной среды в другую, изменяет направление на границе этих сред.

Преломление света происходит по следующему закону: Падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред: , гдеαугол падения, βугол преломления, nпостоянная величина, не зависящая от угла падения.

При изменении угла падения изменяется и угол преломления. Чем больше угол падения, тем больше угол преломления. Если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения: β < α.Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

абсолютный показатель преломления вещества — величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде n=c/v Величина n, входящая в закон преломления, называется относительным показателем преломления для пары сред.

Величина n есть относительный показатель преломления среды В по отношению к среде А, а n' = 1/n есть относительный показатель преломления среды А по отношению к среде В. Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая. Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления .

(Абсолютный - относительно вакуума. Относительный - относительно любого другого вещества (того же воздуха, например). Относительный показатель двух веществ есть отношение их абсолютных показателей. )

Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон.

В геометрической оптике явление объясняется в рамках закона Снелла. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего показателя преломления к большему показателю, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду — там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Вследствие взаимодействия электромагнитной волны со средой, изменяется скорость её распространения. Эта зависимость имеет вид: v=c/n, где n= -абсолютный показатель преломления вещества, v – скорость света в среде, а с – скорость света в вакууме. При переходе света через границу раздела двух сред, скорость распространения света в которых различна, происходит изменение его направления. Это явление называется преломлением или рефракцией света. Явление рефракции света легло в основу метода определения концентрации разбавленных растворов по эмпирической зависимости между показателем преломления и концентрацией раствора.

Относительный показатель преломления сред

n21=n2/n1

где n2 и n1 - абсолютные показатели преломления сред.

При переходе света из среды с меньшим показателем преломления (оптически менее плотная среда) в среду с большим показателем преломления (оптически более плотная среда) угол падения луча больше угла преломления. Если луч падает на границу раздела сред под наибольшим возможным углом i=p/2 (луч скользит вдоль границы раздела сред), то он будет преломляться под углом r<p/2. Этот угол является наибольшим углом преломления для данных сред и называется предельным углом преломления. Из закона преломления света следует

, откуда

sin rпр=n1/n2

Если свет переходит из оптически более плотной среды в оптически менее плотную, то угол преломления больше угла падения. При некотором угле падения i луча угол преломления равен p/2, т.е. преломлённый луч скользит вдоль границы раздела сред. При дальнейшем увеличении угла падения преломление не происходит, весь падающий свет отражается от границы раздела сред (полное отражение). Угол i называется предельным углом полного отражения и обозначается iпр. Так как

,

то

sin iпр=n 2/n 1

Таким образом, предельный угол преломления и предельный угол полного отражения для данных сред зависят от их показателей преломления. Это нашло применение в приборах для измерения показателя преломления веществ - рефрактометрах, используемых при определении чистоты воды, концентрации общего белка сыворотки крови, для идентификации различных веществ и так далее.

Описание установки

Основной частью рефрактометра являются две прямоугольные призмы 1 и 2, сделанные из одного и того же сорта стекла (рис.1,а). Призмы соприкасаются гипотенузными гранями, между которыми имеется зазор около 0,1 мм. Между призмами помещают каплю жидкости, показатель преломления которой требуется определить. Луч света от источника 3 направляется на боковую грань верхней призмы и, преломившись, попадает на гипотенузную грань АВ. Поверхность АВ матовая, поэтому свет рассеивается и, пройдя через исследуемую жидкость, падает на грань CD нижней призмы под различными углами от 0 до 90°. Если показатель преломления жидкости меньше показателя преломления стекла, то лучи света входят в призму 2 в пределах от 0 до rпр. Пространство внутри этого угла будет освещенным, а вне его – тёмным. Таким образом, поле зрения, видимое в зрительную трубу, разделено на две части: тёмную и светлую. Положение границы раздела света и тени определяется предельным углом преломления, зависящим от показателя преломления исследуемой жидкости.

Если исследуемая жидкость имеет большой показатель поглощения (мутная, окрашенная жидкость), то во избежание потерь энергии при прохождении света через жидкость измерения проводят в отраженном свете. Ход лучей в рефрактометре в этом случае показан на рис.1,б. Луч света от источника проходит через матовую боковую грань СМ нижней призмы 2. При этом свет рассеивается и падает на гипотенузную грань CD, соприкасающуюся с исследуемой жидкостью, под всевозможными углами от 0 до 90°. Если жидкость оптически менее плотная, чем стекло, из которого изготовлена призма, то лучи, падающие под углами, большими iпр, будут испытывать полное отражение и выходить через вторую боковую грань нижней призмы в зрительную трубу. Поле зрения, видимое в зрительную трубу, так же как и в первом случае, окажется разделенным на светлую и тёмную части. Положение границы раздела в данном случае определяется предельным углом полного отражения, также зависящем от показателя преломления исследуемой жидкости.

С помощью этого прибора можно исследовать вещества, показатель преломления которых меньше показателя преломления стекла измерительных призм. Оптическая система рефрактометра изображена на рис. 2.

В рефрактометре используется источник 3 белого света. Вследствие дисперсии при прохождении светом призм 1 и 2 граница света и тени оказывается окрашенной. Во избежание этого перед объективом зрительной трубы помещают компенсатор 4. Он состоит из двух одинаковых призм, каждая из которых склеена из трех призм, обладающих различным показателем преломления. Призмы подбирают так, чтобы монохроматический луч с длиной волны l = 589,3 мкм. (длина волны желтой линии натрия) не испытывал после прохождения компенсатора отклонения. Лучи с другими длинами волн отклоняются призмами в различных направлениях. Перемещая призмы компенсатора с помощью специальной рукоятки, добиваются того, чтобы граница света и темноты стала возможно более чёткой.

Лучи света, пройдя компенсатор, попадают в объектив 6 зрительной трубы. Изображение границы раздела свет – тень рассматривается в окуляр 7 зрительной трубы. Одновременно в окуляр рассматривается шкала 8. Так как предельный угол преломления и предельный угол полного отражения зависят от показателя преломления жидкости, то на шкале рефрактометра сразу нанесены значения этого показателя преломления.

Оптическая система рефрактометра содержит также поворотную призму 5. Она позволяет расположить ось зрительной трубы перпендикулярно призмам 1 и 2, что делает наблюдение более удобным.

В общей фокальной плоскости объектива и окуляра зрительной трубы помещают стеклянную пластинку, на которую нанесена визирная линия (или крест, образованный тонкими нитями). Перемещением зрительной трубы добиваются совпадения визирной линии с границей свет – тень и по шкале определяют показатель преломления исследуемой жидкости. В некоторых современных рефрактометрах зрительная труба укрепляется неподвижно, а система измерительных призм может поворачиваться.

Дата: 2019-04-22, просмотров: 1533.