Первый закон термодинамики для изопроцессов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

При изотермическом процессе температура не изменяется, значит не изменяется внутренняя энергия

Первый закон принимает вид

Все количество теплоты, которую получает газ расходуется на выполнение им работы против внешних сил. Или, если газ сжимается, при этом не изменяется температура, работу выполняют внешние силы, а газ отдает некоторое количество теплоты в окружающую среду.

При изохорном процессе объем не изменяется, значит работа нулевая

Первый закон термодинамики принимает вид

В этом случае

Если газ изохорно охлаждается, его внутренняя энергия уменьшается, и он отдает теплоту в окружающую среду.

При изобарном процессе первый закон термодинамики имеет общий вид

Здесь справедливы формулы

 

Применение второго закона к биологическим системам в его классической формулировке приводит, как кажется на первый взгляд, к парадоксальному выводу, что процессы жизнедеятельности идут с нарушением принципов термодинамики.

В самом деле, усложнение и увеличение упорядоченности организмов в период их роста сопровождаются кажущимся уменьшением, а не увеличением энтропии, как должно было бы следовать из второго закона.

Однако увеличение энтропии в необратимых самопроизвольных процессах происходит в изолированных системах, а биологические системы являются открытыми. Проблема поэтому заключается в том, чтобы, во-первых, понять, как связано изменение энтропии с параметрами процессов в открытой системе, а во-вторых, выяснить, можно ли предсказать общее направление необратимых процессов в открытой системе по изменению ее энтропии. Главная трудность в решении этой проблемы состоит в том, что мы должны учитывать изменение всех термодинамических величин во времени непосредственно в ходе процессов в открытой системе. Постулат И.Р. Пригожина состоит в том, что общее изменение энтропии dS открытой системы может происходить независимо либо за счет процессов обмена с внешней средой (deS ), либо вследствие внутренних необратимых процессов (diS ):

dS = deS + diS.

Во всех реальных случаях diS > 0, и только если внутренние процессы идут обратимо и равновесно, то diS = 0. Для изолированных систем deS = 0, и мы приходим к классической формулировке второго закона:

dS = diS = 0.

В клеточном метаболизме всегда можно выделить такие две группы процессов. Например, поступление извне глюкозы, выделение наружу продуктов ее окисления (deS) и окисление глюкозы в процессах дыхания (diS).

В фотосинтезе приток свободной энергии света приводит к уменьшению энтропии клетки deS < 0, а процессы дыхания, диссимиляции в клетке увеличивают ее энтропию diS > 0. В зависимости от соотношения скоростей изменения deS и diS общая энтропия dS открытой системы может либо увеличиваться, либо уменьшаться со временем.

Если единственной причиной необратимости и увеличения энтропии системы являются ее внутренние процессы, то они ведут к уменьшению ее термодинамического потенциала. В этом случае

где G - полный термодинамический потенциал (или энергия Гиббса G = U + PV - TS ).

Можно показать, что скорость возникновения положительной энтропии внутри открытой химической системы зависит от химического сродства А и скорости реакции u:

Химическое сродство А определяется разностью химических потенциалов реагентов реакции, то есть ее движущей силой.

Выражение (6) имеет простой смысл. Оно показывает, что скорость образования в системе положительной энтропии в ходе необратимого химического процесса прямо пропорциональна его движущей силе A и скорости u. Очевидно, что величина diS / dt является, вообще говоря, переменной, поскольку в ходе химической реакции все время изменяются переменные концентрации реагирующих веществ, а следовательно, и зависящие от них величины А и u.

Второй закон

Циклом называется круговой процесс, при котором система, пройдя через ряд состояний, возвращается в исходное положение.

Прямой цикл

-КПД двигателя

Обратный цикл

-холодильный коэф-нт

-отопительный коэф-нт

Цикл Карно– это цикл идеального двигателя, в котором тепло подводится и отводится в изотермических условиях при температурах нагревателяТ1и холодильникаТ2, переход отТ1кТ2и обратно осуществляется в адиабатных условиях.

Ац = А12 + А23 + А34 + А41 (1)

, (2)

, (3)

, (4)

. (5)

. (6)

(7)

Теоремы Карно:

  1. Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.
  2. Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а зависит только от температур нагревателя и холодильника.

теорема Карно послужила основанием для установления термоди­нами­чес­кой шкалы температур, такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела.

Дата: 2019-04-22, просмотров: 289.