Ноября 2001 года                                                                  Санкт-Петербург
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Доклад

по волоконной оптике

 

студентов группы 2094/1

Михеева Евгения

и Агафонова Максима

 

 

Ноября 2001 года                                                                  Санкт-Петербург

 

Введение

 

История вопроса

Разумеется, нет ничего нового в использовании частот оптического диапазона для передачи информации. Визуальные методы связи широко используются не только человеком, но и в животном мире. Человек применял оптические сигналы для передачи информации на большие расстояния еще во времена первобытной цивилизации. Днем он использовал для этого, например, дымовые сигналы или отраженный солнечный свет, а ночью сигнальные огни. В подтверждение этого можно привести два примера из истории Древней Греции.

В пьесе Эсхила «Агамемнон», написанной в V веке до н.э. и описывающей события из греческой мифологии, происходившее за тысячелетие до ее написания, приведены объяснения Клитемнестры того, как она узнала предыдущей ночью о падении Трои:

«Гефест, пославшей с Иды вестовой огонь. Огонь огню, костер костру известие передавал».

Затем она дает графическое описание девяти символов, использованных для передачи новостей из Средней Азии в Аргос с помощью сигнальных огней.

Немного позже Геродот опишет, как в 480 г. до н.э. персидский полководец Мордониус, размышлял об отправлении теми же средствами аналогичного послания о взятии Афин своему императору Кирксу. Однако его мечта осталась неосуществленной.

В каждом из приведенных примеров информация передавалась с помощью заранее обусловленного сигнала. Хотя в древние времена были и более сложные методы сигнализации, однако на протяжении столетий вплоть до изобретения флажковой сигнализации в конце XVIII столетия, по-видимому использовались только сигнальные огни. Со временем они были заменены машинным на суше и флажковой сигнализацией и проблесковыми сигнальными лампами на море. Последние, в свою очередь, были заменены телефоном и телеграфной радиосвязью. К этому времени произошли существенные изменения в форме (характере) передаваемой информации. Все ранние системы передачи информации были такими, которые теперь мы назвали бы цифровыми системами, в то время как телефон и радио позволили передавать аналоговую информацию в аналоговом виде, т.е. в виде электрического колебания, непрерывно изменяющегося во времени.

Новизна и преимущество современных оптических систем связи заключается в том, что оптический сигнал обычно распространяется направленно по световодной системе и обеспечивает высокую информационную емкость канала связи.

Можно сказать, что современная эра оптической связи началась с изобретения лазера в 1958 г. и последовавшем вскоре созданием первых лазеров в 1961 г. По сравнению с излучением обычных источников оптического диапазона лазерное излучение обладает высокой монохроматичностью и когерентностью и имеет очень большую интенсивность. Лазерное излучение в самом деле очень похоже на излучение обычных радиопередатчиков СВЧ диапазона, поэтому было совершенно естественно использовать его в качестве несущего колебания в системах связи. На первом этапе основной причиной интереса к лазерному излучению была возможность получения исключительно широкой полосы пропускания при условии осуществления его модуляции в полосе частот, составляющей всего несколько процентов от основной частоты излучения лазера. В самом деле лазерная система связи на гелий-неоновом лазере имеет полосу пропускания 470 ГГц (1% от основной частоты), в которой можно разместить одновременно около миллиона телевизионных каналов.

В 60-е годы было предложено много технических решений по осуществлению различных видов модуляции лазерных излучателей (частотный, фазовый, амплитудный, по интенсивности и полярности, частотно-импульсный), а также был создан ряд лазерных систем связи, использующих распространение света в свободном пространстве.

В это же время широко проводились эксперименты по созданию направляющих систем связи, в которых пучок вводился в канал передачи с помощью линз, располагаемых друг от друга на расстоянии 10 или 100 метров. Благодаря работам К.С. Као с сотрудниками из Standard Telecommunications Laboratories в Харлоу (Англия) появился новый подход к созданию направляющих лазерных систем связи. Они предложили для передачи светового сигнала использовать длинные оптически волокна, подобные тем, которые уже использовались в эндоскопии и других областях. Можно утверждать, что статья Као и Хокэма, опубликованная в 1966 году, заложила основу теории волоконно-оптической связи.

Основной причиной, сдерживающей практическую реализацию этой идеи, было большое затухание сигнала в оптическом волокне. Если в ясный день ослабление оптического сигнала в атмосфере составляет всего несколько дБ на километр, то имевшиеся в то время лучшие стекла обладали минимальными потерями в видимой области спектра (порядка 1000 дБ/км). Главный тезис Као и Хокэма сводился к тому, что, если бы удалось уменьшить затухание в стекле в видимой или ближней инфракрасной области спектра до 20 дБ/км, то стало бы возможным создание практических волоконно-оптических систем связи. При таком уровне затухания в волокне мощность передаваемого сигнала уменьшилась бы 106 раз при прохождении расстояния 3 км. Производители стекла во главе с фирмой Corning (США) нашли пути удаления примесей из материала волокна и достигли этого требуемого уровня потерь в 1970 году, а к 1975 г. уменьшили их до 20 дБ/км. Японские исследователи опубликовали результаты по получению рекордно малых потерь в волокне, а именно 0,5 дБ/км в 1976 г. и 0,2 дБ/км в 1979 г. Если потерь 0,2 дБ/км могли быть обеспечены на большой длине волокна, то мощность передаваемого сигнал уменьшилась бы лишь в 2 раза после прохождения им расстояния 15 км. Следует, однако, подчеркнуть, что приведенные рекордно малые потери были получены в лабораторных условиях на более длинных волнах (1,55 мкм) и были достигнуты главным образом благодаря удалению из волокна ионов гидроксила.

К 1980 г. многие фирмы в ряде стран уже выпускали волокно с потерями менее 10 дБ/км и были созданы надежные полупроводниковые источники оптического излучения (на GaAs) и фотодетекторы (на Si). Во всех странах, имеющих развитую индустрию связи, стали проводится всесторонние испытания волоконно-оптических линий связи (ВОЛС), включаемых в обычные телефонные сети.

Используемые в ВОЛС полупроводниковые источники света имеют неизменно широкую полосу излучения, составляющую около 30 нм у светодиодов (СД) и около 3 нм у полупроводниковых лазеров. Это означает, что по сравнению с современной сложной системой радиосвязи оптические системы связи первого поколения оказываются сравнительно простыми и, по существу, состоят только из включаемого и выключаемого источника широкополосного «шума». Некоторые самые ранние системы телеграфной радиосвязи использовали этот же принцип до появления перестраиваемых избирательных систем, позволивших использовать узкополосные несущие колебания. Теоретически исключительно широкая полоса пропускания оптических систем связи оказалась нереалезуемой на практике, однако в результате проведенных исследований все же была создана простая и дешевая оптическая система связи.

 

Теория направляющих систем

Волоконные световоды

Основным элементом ОК является волоконный световод, выполненный в виде тонкого стеклянного волокна цилиндрической формы. Волоконный световод имеет двухслойную конструкцию и состоит из сердцевины и оболочки с разными оптическими характеристиками (показателями преломления ). Сердцевина служит для передачи электромагнитной энергии. Назначение оболочки: создание лучших условий отражения на границе “сердцевина—оболочка” и защита от излучения энергии в окружающее пространство. Снаружи располагается защитное покрытие для предохранения волокна от механических воздействий и нанесения расцветки.Сердцевина и оболочка изготовляются из кварца , покрытие — из эпоксиакрилата, фторопласта, нейлона, лака и других полимеров.

 

Оптические волокна классифицируются на одномодовые и многомодовые. Последние подразделяются на ступенчатые и градиентные. Одномодовые волокна имеют тонкую сердцевину (6…8 мкм), и по ним передается одна волна; по многомодовым (сердцевина 50 мкм) распространяется большое число волн. Наилучшими параметрами по пропускной способности и дальности обладают одномодовые волокна. У ступенчатых световодов показатель преломления в сердечнике постоянен, имеется резкий переход от сердцевины к оболочки и лучи зигзагообразно отражаются от границы “сердечник—оболочка”. Градиентные световоды имеют непрерывное плавное изменение показателя преломления в сердцевине по радиусу световода от центра к периферии, и лучи распространяются по волнообразным траекториям. Показатель преломления сердцевины меняется вдоль радиуса по закону показательной функции

,

где максимальное значение показателя преломления на оси волокна, т. е. при r=0; и— показатель степени, описывающей профиль изменения показателя преломления:

 

 

 

 

 

Чаще всего применяются световоды с параболическим профилем. В этом случае и=2 и соответственно:

 

 

Если принять , то получим известное значение п ступенчатого световода





Оптоэлектронные компоненты

Основой ВОСП являются оптоэлектронные компоненты, и в первую очередь лазеры на передаче сигналов и фотодиоды на их приеме. Лазерные системы работают в оптическом диапазоне волн. Если при передаче по кабелям используются частоты порядка мегагерц, а по волноводам — гигагерц, то для лазерных систем используется видимый инфракрасный спектр оптического диапазона волн (1014...1015 Гц).

Лазер состоит из активной среды, устройства накачки и резонансной системы (рис. 23). Активной средой может быть твердый, жидкий или газообразный материал. Широкое применение получили полупроводники. В качестве устройства накачки используется главным образом электрическая энергия. Могут применяться также солнечная радиация, атомная энергия, химическая реакция и другие источники. Роль резонанса выполняют зеркала или другие полированные поверхности.

 

 

 

 

Рис. 23. Принципиальная схема лазера:

1 — активная среда; 2 — устройство накачки; 3 — резонансная система

По принципу действия и эффекту светового излучения лазер может быть отнесен к люминесцентным материалам. Известны различные виды люминесценции (свечения): тепловая (лампочка накаливания), холодная (фосфор и другие светящиеся материалы), природная (светлячок, гнилое дерево), химическая (активная реакция) и др. В полупроводниковых лазерах действует электрическая люминесценция — свечение происходит за счет электрической накачки.

Принцип действия квантовых приборов (лазеров) основан на использовании излучения атомов вещества под воздействием внешнего электромагнитного поля. Из квантовой механики известно, что движение электронов атома вокруг ядра характеризует энергетическое состояние электронов, иначе называемое энергетическим уровнем. При переходе электронов с одной орбиты на другую под воздействием внешнего электромагнитного поля меняется энергетический уровень и происходит излучение энергии.

В настоящее время применяются различные типы лазеров: полупроводниковые, твердотельные, газовые и др. Полупроводниковый лазер представляет собой полупроводниковый диод типа р-п, выполненный из активного материала, способного излучать световые кванты—фотоны. В качестве такого материала преимущественно используется арсенид галия с соответствующими добавками (теллура, алюминия, кремния, цинка). В зависимости от характера и количества присадок полупроводник имеет области электронной п (за счет теллура) и дырочной р (за счет цинка) проводимостей.

Под действием приложенного напряжения в полупроводнике происходит возбуждение носителей, в силу чего возникает излучение световой энергии и появляется поток фотонов. Этот поток, многократно отражаясь от зеркал, образующих резонансную систему, усиливается, что приводит к появлению лазерного луча с остронаправленной диаграммой излучения.

 

Схематично полупроводниковый лазер показан на (рис. 24).

 

Рис. 24. Полупроводниковый лазер

Объем полупроводника примерно 1 мм3. К нему подведены металлические электроды для подачи электрического напряжения. Роль отражающих зеркал выполняют плоскопараллельные отполированные торцевые грани полупроводника. Излучение происходит в слое р-п перехода толщиной 0,15...0,2 мкм.

Наряду с лазерами в качестве источника оптического излучения могут применяться светодиоды. Светодиод является таким же люминесцентным полупроводником типа р-п из арсенида галия, но не имеет резонансного усиления. В отличие от лазера, обладающего остронаправленным когерентным лучом, в светодиоде излучение происходит спонтанно (самопроизвольно) и луч имеет меньшую мощность и широкую направленность.

Сравнительные характеристики лазеров и светодиодов приведены в таблице №6 и на (рис.25).

Таблица №6

Излучатель Мощность, мВт Диаграмма, град Ширина спектра, мм Срок службы, ч
Лазер Светодиод 10... 40 5...20 4... 20 60... 80 1...3 30... 50 104... 105 105…106

Сравнивая обычный свет, создаваемый, например, лампочкой накаливания, с лазерным лучом, можно отметить, что в обоих случаях действует поток фотонов. Но в отличие от обычного света, основанного на тепловой природе возникновения и излучающего очень широкий непрерывный спектр частот, лазерный луч имеет электромагнитную основу и представляет собой монохроматический (одноволновый) луч.

 

 

 

 Рис.25. Ширина спектра лазера (1), светодиода (2)

Лазерный луч обладает рядом замечательных свойств. Он распространяется на большие расстояния и имеет строго прямолинейное направление. Луч движется очень узким пучком с малой степенью расходимости (он достигает луны с фокусировкой в сотни метров). Лазерный луч обладает большой теплотой и может пробивать отверстие в любом материале. Световая интенсивность луча больше, чем интенсивность самых сильных источников света.

 

 Рис. 26. Полупроводниковый фотодиод

В качестве приемного устройства, преобразующего свет в электричество, применяется фотодиод. Здесь используется эффект Столетова, состоящий в том, что при воздействии света на активный материал, например полупроводник, изменяются его электрические свойства и возникает электрический сигнал (рис.26).

Таким образом в лазерах электричество преобразуется в свет, а в фотодиодах происходит обратный процесс: свет преобразуется в электричество.

 





Системы передачи

В оптических системах передачи применяются принципиально те же методы образования многоканальной связи, что и в обычных системах передачи по электрическому кабелю, т. е. частотный и временной методы разделения каналов.

Во всех случаях оптической передачи электрический канал, создаваемый частотным или временным методом, модулирует оптическую несущую. В модулированном виде световой сигнал передается по ОК. В основном используется способ модуляции интенсивности оптической несущей, при которой от амплитуды электрического сигнала зависит мощность излучения, подаваемая в кабель.

В оптических системах передачи, как правило, применяется цифровая (импульсная) передача. Это обусловлено тем, что аналоговая передача требует высокой степени линейности промежуточных усилителей, которую трудно обеспечить в оптических системах.

Таким образом, наиболее распространенной волоконно-оптической системой связи является цифровая система с временным разделением каналов и импульсно-кодовой модуляцией (ИКМ), использующая модуляцию интенсивности излучения источника. Дуплексная связь осуществляется по двум волоконным световодам, каждый из которых предназначен для передачи информации в одном направлении.

В оптических системах связи используются преимущественно цифровые системы передачи—ИКМ на 30, 120, 480 и 1920 каналов.

Доклад

по волоконной оптике

 

студентов группы 2094/1

Михеева Евгения

и Агафонова Максима

 

 

ноября 2001 года                                                                  Санкт-Петербург

 

Введение

 

История вопроса

Разумеется, нет ничего нового в использовании частот оптического диапазона для передачи информации. Визуальные методы связи широко используются не только человеком, но и в животном мире. Человек применял оптические сигналы для передачи информации на большие расстояния еще во времена первобытной цивилизации. Днем он использовал для этого, например, дымовые сигналы или отраженный солнечный свет, а ночью сигнальные огни. В подтверждение этого можно привести два примера из истории Древней Греции.

В пьесе Эсхила «Агамемнон», написанной в V веке до н.э. и описывающей события из греческой мифологии, происходившее за тысячелетие до ее написания, приведены объяснения Клитемнестры того, как она узнала предыдущей ночью о падении Трои:

«Гефест, пославшей с Иды вестовой огонь. Огонь огню, костер костру известие передавал».

Затем она дает графическое описание девяти символов, использованных для передачи новостей из Средней Азии в Аргос с помощью сигнальных огней.

Немного позже Геродот опишет, как в 480 г. до н.э. персидский полководец Мордониус, размышлял об отправлении теми же средствами аналогичного послания о взятии Афин своему императору Кирксу. Однако его мечта осталась неосуществленной.

В каждом из приведенных примеров информация передавалась с помощью заранее обусловленного сигнала. Хотя в древние времена были и более сложные методы сигнализации, однако на протяжении столетий вплоть до изобретения флажковой сигнализации в конце XVIII столетия, по-видимому использовались только сигнальные огни. Со временем они были заменены машинным на суше и флажковой сигнализацией и проблесковыми сигнальными лампами на море. Последние, в свою очередь, были заменены телефоном и телеграфной радиосвязью. К этому времени произошли существенные изменения в форме (характере) передаваемой информации. Все ранние системы передачи информации были такими, которые теперь мы назвали бы цифровыми системами, в то время как телефон и радио позволили передавать аналоговую информацию в аналоговом виде, т.е. в виде электрического колебания, непрерывно изменяющегося во времени.

Новизна и преимущество современных оптических систем связи заключается в том, что оптический сигнал обычно распространяется направленно по световодной системе и обеспечивает высокую информационную емкость канала связи.

Можно сказать, что современная эра оптической связи началась с изобретения лазера в 1958 г. и последовавшем вскоре созданием первых лазеров в 1961 г. По сравнению с излучением обычных источников оптического диапазона лазерное излучение обладает высокой монохроматичностью и когерентностью и имеет очень большую интенсивность. Лазерное излучение в самом деле очень похоже на излучение обычных радиопередатчиков СВЧ диапазона, поэтому было совершенно естественно использовать его в качестве несущего колебания в системах связи. На первом этапе основной причиной интереса к лазерному излучению была возможность получения исключительно широкой полосы пропускания при условии осуществления его модуляции в полосе частот, составляющей всего несколько процентов от основной частоты излучения лазера. В самом деле лазерная система связи на гелий-неоновом лазере имеет полосу пропускания 470 ГГц (1% от основной частоты), в которой можно разместить одновременно около миллиона телевизионных каналов.

В 60-е годы было предложено много технических решений по осуществлению различных видов модуляции лазерных излучателей (частотный, фазовый, амплитудный, по интенсивности и полярности, частотно-импульсный), а также был создан ряд лазерных систем связи, использующих распространение света в свободном пространстве.

В это же время широко проводились эксперименты по созданию направляющих систем связи, в которых пучок вводился в канал передачи с помощью линз, располагаемых друг от друга на расстоянии 10 или 100 метров. Благодаря работам К.С. Као с сотрудниками из Standard Telecommunications Laboratories в Харлоу (Англия) появился новый подход к созданию направляющих лазерных систем связи. Они предложили для передачи светового сигнала использовать длинные оптически волокна, подобные тем, которые уже использовались в эндоскопии и других областях. Можно утверждать, что статья Као и Хокэма, опубликованная в 1966 году, заложила основу теории волоконно-оптической связи.

Основной причиной, сдерживающей практическую реализацию этой идеи, было большое затухание сигнала в оптическом волокне. Если в ясный день ослабление оптического сигнала в атмосфере составляет всего несколько дБ на километр, то имевшиеся в то время лучшие стекла обладали минимальными потерями в видимой области спектра (порядка 1000 дБ/км). Главный тезис Као и Хокэма сводился к тому, что, если бы удалось уменьшить затухание в стекле в видимой или ближней инфракрасной области спектра до 20 дБ/км, то стало бы возможным создание практических волоконно-оптических систем связи. При таком уровне затухания в волокне мощность передаваемого сигнала уменьшилась бы 106 раз при прохождении расстояния 3 км. Производители стекла во главе с фирмой Corning (США) нашли пути удаления примесей из материала волокна и достигли этого требуемого уровня потерь в 1970 году, а к 1975 г. уменьшили их до 20 дБ/км. Японские исследователи опубликовали результаты по получению рекордно малых потерь в волокне, а именно 0,5 дБ/км в 1976 г. и 0,2 дБ/км в 1979 г. Если потерь 0,2 дБ/км могли быть обеспечены на большой длине волокна, то мощность передаваемого сигнал уменьшилась бы лишь в 2 раза после прохождения им расстояния 15 км. Следует, однако, подчеркнуть, что приведенные рекордно малые потери были получены в лабораторных условиях на более длинных волнах (1,55 мкм) и были достигнуты главным образом благодаря удалению из волокна ионов гидроксила.

К 1980 г. многие фирмы в ряде стран уже выпускали волокно с потерями менее 10 дБ/км и были созданы надежные полупроводниковые источники оптического излучения (на GaAs) и фотодетекторы (на Si). Во всех странах, имеющих развитую индустрию связи, стали проводится всесторонние испытания волоконно-оптических линий связи (ВОЛС), включаемых в обычные телефонные сети.

Используемые в ВОЛС полупроводниковые источники света имеют неизменно широкую полосу излучения, составляющую около 30 нм у светодиодов (СД) и около 3 нм у полупроводниковых лазеров. Это означает, что по сравнению с современной сложной системой радиосвязи оптические системы связи первого поколения оказываются сравнительно простыми и, по существу, состоят только из включаемого и выключаемого источника широкополосного «шума». Некоторые самые ранние системы телеграфной радиосвязи использовали этот же принцип до появления перестраиваемых избирательных систем, позволивших использовать узкополосные несущие колебания. Теоретически исключительно широкая полоса пропускания оптических систем связи оказалась нереалезуемой на практике, однако в результате проведенных исследований все же была создана простая и дешевая оптическая система связи.

 

Дата: 2019-07-30, просмотров: 191.