Выбор сечений и типов проводов и шин. Конструирование электрического монтажа
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Выбор сечений проводов производится по допустимому нагреву по таблице 1.5 и условиям их механической прочности.

При выборе по нагреву для проводов с резиновой или пластмассовой изоляцией применяется условие при котором нагрев жил не должен превышать, как правило, +65  при окружающей температуре воздуха 25 .

В качестве расчетной токовой нагрузки для проверки сечения проводников по нагреву следует принимать токовую нагрузку, приведенную к продолжительному режиму.

При этом для медных проводников сечением до 6 мм  токовые нагрузки принимаются, как для установок с продолжительным режимом работы. Для сечений более 10 мм  при кратковременном, повторно-кратковременном и тому подобных режимах работы электроприемников токовые нагрузки принимаются путем умножения на коэффициент 0.875/ , где ПВ – продолжительность включения, выраженная в относительных единицах. При длительности включения более 4 мин, а также при перерывах недостаточной длительности

между включениями наибольшие допустимые токовые нагрузки следует определять, как для установок с продолжительным режимом работы.

При отклонении температуры окружающего воздуха от +25  токовые

нагрузки принимаются с учетом поправочного коэффициента (таблица 1.6).

Таблица 1.5.

Сечение токопроводящей жилы, мм

Токовые нагрузки, А

Провода, проложенные открыто

Провода, проложенные в комплектном устройстве

по панели в клицах в коробе в жгуте
0.5 11 10.3 9.5 8.7 7.8
0.75 15 14 13 11.8 10.7
1.00 17 16 14.8 13.4 12
1.50 23 21 20 18 16.5
2.50 30 28 26 24 21.5
4 41 38 36 32 29
6 50 47 43 40 35
10 80 75 70 63 57
16 100 94 87 79 71
25 140 130 120
35 170 160
50 215 200
70 270 250
95 330
120 385

 

При выборе сечения проводов необходимо также учитывать допустимые

падения напряжения в проводах. Так, для цепей измерения напряжения они не должны превышать – 1.5%, для цепей питания – 3%, для цепей оперативноготока – 10%. Завышение сечения провода, особенно в устройствах с бесконтактными полупроводниками и интегральными элементами, может привести к возникновению паразитных емкостных связей.

 

Таблица 1.6. Поправочный коэффициент.

Отклонения от температуры среды, Поправочный коэффициент
-5 1.32
0 1.27
+5 1.22
+15 1.12
+25 1.00
+35 0.87
+45 0.71

 

По условиям механической прочности медные жилы кабелей и проводов, непосредственно присоединяемые к винтовым зажимам аппаратов и приборов способом образования кольца из жилы, должны иметь сечения не менее 1.5 мм ,

для неответственных цепей – не менее 1 мм . К аппаратам, имеющим втычное подсоединение прямой жилой провода, допускается монтаж сечением до 0.75 мм . Присоединение к винтовым зажимам проводов и кабелей сечением менее 0.75 мм  допускается только с помощью наконечников, обжимающих провод по изоляции.

Для НКУ с бесконтактной электронной аппаратурой, где соединения выполняются пайкой или с помощью наконечников, монтаж может выполняться многожильным медным проводом сечением до 0.35 мм . Монтаж электронных блоков допускается выполнять проводом до 0.2 мм .

Электрический монтаж в НКУ может быть выполнен одним из следующих способов:

- панельный – одножильным проводом с раскладкой виде плоского жгута, закрепленного скобами к панели;

- объемный – пучками многожильных проводов, связанных в жгуты, закрепленные скобами к металлоконструкции;

- с прокладкой в коробках или клицах;

- свободный – хаотичный монтаж проводов между аппаратами и блоками (Х-монтаж);

- шинами.

При жгутовом монтаже провода укладываются в пучки и связываются перешивалками.

Выбор сечений шин по нагреву длительной токовой нагрузкой производится из расчета допустимой температуры их нагрева до +70  при

температуре окружающего воздуха +25 . За длительную токовую нагрузку при выборе шин выводных цепей, сборных шин полупроводниковых преобразовательных устройств принимаются номинальное значение выпрямленного тока, а для релейно-контакторных устройств – значение тока коммутационного аппарата, установленного в данной цепи.

Нагрузки приведены для шин прямоугольного сечения, расположенных на ребро. При расположении их плашмя токовые нагрузки должны быть уменьшены на 5% для шин шириной до 60 мм  и на 8% для шин шириной более 60 мм .

Устойчивость шин к динамическим воздействиям токов короткого замыкания оказывает влияние на прочность конструкции, выбор расстояний между шинами, их взаимное расположение и способ механического крепления.

В комплектных устройствах напряжением до 1000 В из-за небольшой

длительности токов короткого замыкания расчет шин на термическую стойкость не производится.

Расчет шин на электродинамическую стойкость должен производится из условий, что максимальные механические напряжения в медных шинах не будут превосходить 140 МПа.

Расчет однополостных медных шин производится по формулам. От взаимодействия токов короткого замыкания между фазами усилие в шине, Н,

,

где l – длина пролета шин между точками их опоры, м; a – расстояние между осями фаз, м;  - ударный ток трехфазного короткого замыкания.

Максимальный изгибающий момент шины, ,

.

Напряжение в материале шин, Па,

,

где W – момент сопротивления шин, равный для прямоугольного сечения, м :

.

Максимально допустимая длина пролета для медных шин, м

.

Динамическое усилие, возникающее в шинах при токах короткого замыкания, передается на изоляторы, которые также должны быть рассчитаны на это усилие.

В соответствии с ПУЭ допустимое усилие на изоляторы должно

составлять не более 60% разрушающей нагрузки изолятора, которая задается в

ГОСТ или ТУ на тот или иной изолятор. Обычно применяются как стандартные фарфоровые изоляторы, армированные крепежными болтами или резьбовыми втулками, так и специальные прессованные из пластмассы.

При конструировании шинных сборок на номинальные токи свыше 1600 А должны быть предусмотрены меры, обеспечивающие наименьшие индуктивные сопротивления (например, путем спаривания фаз) и наименьшие потери энергии (например, путем исключения замкнутых магнитных контуров).

Присоединение шин прямоугольного сечения к электрическим аппаратам должно производиться в соответствии со следующими требованиями.

а) Медные шины при малых токах как к плоским, так и к стержневым резьбовым контактным выводам аппаратов должны присоединяться непосредственно.

б) Ширина шины в месте присоединения к плоскому выводу аппаратов должна быть не менее ширины этого вывода, а при присоединении к стержневому выводу – не менее двойного диаметра стержня.

в) Шины прямоугольного сечения при присоединении к стержневому выводу аппарата зажимаются между двумя медными или латунными гайками.

г) Установившиеся температуры нагрева контактных соединений зажимов с внешними проводниками из меди, алюминия и их сплавов при номинальном режиме не должны превышать +95 . При применении покрытия контактной поверхности кадмием, оловом, никелем или цинкооловянистым сплавом допускается повышение температуры на +10 . При протекании токов короткого замыкания температура нагрева не должна превышать 200  у соединений алюминиевых проводников с медными и 300  у соединений медных проводников.

д) Электрическое сопротивление контактного соединения после сборки на длине нахлестки должно составлять не более 1.2 от сопротивления целого проводника той же длины.

е) Контактное давление, определяемое расчетом, должно быть не менее 10 МПа.

ж) При токах более 400 А плоские зажимы рекомендуется выполнять не менее чем с двумя отверстиями под болты.

Сварные соединения шин обладают малым электрическим переходным сопротивлением контакта, устойчивостью электрических и механических характеристик, устойчивостью к электродинамическим и термическим воздействиям токов короткого замыкания. Сварные соединения не требуют какого-либо обслуживания в процессе эксплуатации, уменьшают расход цветных металлов. Однако сварные соединения не позволяют создать разборных конструкций, т. е. перевести изготовление НКУ на поток, сложны в оперативном демонтаже силовой ошиновки на объекте.

Шины незначительных длин не должны закрепляться наглухо, так как под действием изменения температуры окружающей среды, токов нагрузки и токов короткого замыкания происходит изменение длины шин, поэтому они должны иметь некоторую степень свободы для возможного перемещения вдоль трассы ошиновки.

В шинодержателях, применяемых в установках при переменных токах

более 1000 А, необходимо использование болтов и крепящих деталей из немагнитных материалов.

Шины должны окрашиваться в отличительные цвета фаз и полюсов. При переменном токе фаза А окрашивается в желтый цвет, фаза В – в зеленый, фаза С – в красный, нулевая шина – в фиолетовый. При постоянном токе положительная шина окрашивается в красный цвет, а отрицательная – в синий цвет. Шины переменного тока должны располагаться в следующей последовательности: фаза

 А – слева, фаза В – посередине, фаза С – справа, если смотреть со стороны обслуживания ошиновки. Окраску шин следует производить термостойкими красками, выдерживающими температуру нагрева шин +70 .

Материал шин: медных – медь голая мягкая или твердая марки МГМ или МГТ, сортамент по ГОСТ 434-78; алюминиевых – алюминий марки АДО и алюминиевый сплав марки АДЗ1, сортамент по ГОСТ 15176-70.

Силовой монтаж внутри преобразовательных устройств рекомендуется

выполнять медными шинами.

Конструирование НКУ

Дата: 2019-07-30, просмотров: 181.