Оптимизация конструкции в соответствии с выбранным
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

    критерием качества. Выбор оптимального варианта.

 

Проанализировав выбранный критерий качества, можно провести оптимизацию конструкции, которая удовлетворяла бы требованиям, предъявляемым к РЭА подобного типа.

Конструкция источника питания должна обеспечивать:

- - надежность;

- - низкую стоимость;

- - максимальную ремонтопригодность;

- - высокие эноргомические показатели.

Особое внимание при конструировании радиоэлектронной аппаратуры уделяется технологичности конструкции отдельных узлов, деталей и приборов в целом, так как технологичность конструкции существенно сказывается на качестве сборки, ее трудоемкости и себестоимости. Необходимо стремится к тому, чтобы во вновь создаваемых конструкциях в максимальной степени использовались стандартные и нормализованные детали, а также детали и узлы из ранее спроектированных конструкций, с целью сокращения затрат на разработку и освоение. Выполнить это условие можно путем применения метода функционально-узлового конструирования.

Прибор размещаем в корпусе. В качестве механической конструкции можно использовать каркас, на который будут крепиться печатные платы, передняя и задняя панели, детали корпуса. Как уже отмечалось при конструировании источника питания, применяем функционально-узловой метод. Его сущность заключается в том, что часть схемы, способная выполнять частичную задачу, объединяется в конструктивно и технологически законченные узлы. Основными достоинствами этого метода является:

- - возможность одновременной разработки, изготовления и наладки узлов;

- - повышение надежности за счет наличия резервных узлов (например, из ЗИПа), которыми заменяются узлы, подлежащие ремонту;

- - повышение ремонтопригодности РЭА в эксплутационных условиях;

- - возможность изменения прогрессивной технологии.

При функционально-узловом методе значительно упрощается сборка и монтаж как всей РЭА, так и отдельных ее частей снижается квалификация сборщиков (в процессе сборки не требуются рабочие высокой квалификации), обеспечивается технологичность и экономичность РЭА при любом объеме ее выпуска. С учетом изложенного выше, схема источника питания разбита на следующие функциональные узлы:

- - плату управления;

- - плату опознавания режима стабилизации;

- - плату защиты.

Функциональные узлы выполнены на печатных платах размером 170´200 мм из фольгированного стеклотекстолита, толщиной 1,5 мм ГОСТ 10316-72.

Соединение узлов между собой и элементами передней панели осуществляется посредством проводов.

Компоновка панели управления (панель передняя) имеет целью достичь внешней выразительности аппарата и разделить элементы управления по функциональному назначению.

При компоновке передней панели необходимо использовать метод относительной симметрии, когда все элементы, выносимые на переднюю панель, располагаются симметрично относительно друг друга.

При конструировании и его компоновке должны быть учтены требования оптимальных функциональных связей между модулями и их стабильность и устойчивость, требования прочности жесткости, помехозащищенности и нормального теплового режима, требования технологичности, эргономики, удобства эксплуатации и ремонта.

Проектируемый прибор относится к стационарной РЭА, поэтому необходимо стремится к тому, чтобы конструкция источника питания была удобной при эксплуатации и хранении. С этой целью целесообразно использовать не унифицированный каркас блока, а собрать его из отдельных частей. Отдельные детали каркаса соединяются при помощи сварных соединений. Для обеспечения надлежащей жесткости конструкции, каркас необходимо изготовить из стали, толщиной не менее 1,0 мм. Большая толщина стенок неизбежно приведет к увеличению массы, а меньшая к необратимым деформациям при случайном падении источника питания. Такой метод сбора каркаса исключит наличие дополнительных крепежных элементов, которые используются в унифицированных блоках.

 

 

2.4. 2.4. Детально-конструктивная проработка оптимального варианта.

Дата: 2019-07-30, просмотров: 182.