Расходомеры переменного перепада давления.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Одним из наиболее распространенных средств измерений расхода жидкостей и газов (паров), протекающих по трубопроводам, являются расходомеры переменного перепада давления, состоящие из стандартного сужающего устройства, дифманометра, приборов для измерения параметров среды и соедини­тельных линий. В комплект расходомерного устройства также входят прямые участки трубопроводов до и после сужающего устройства с местными со­противлениями.

 Сужающее устройство расходомера является первичным измерительным преобразователем расхода, в котором в результате сужения сечения потока из­меряемой среды (жидкости, газа, пара) образуется перепад (разность) давления, зависящий от расхода. В качестве стандартных (нормализованных) сужающих устройств применяются измерительные диафрагмы, сопла, сопла Вентури и трубы- Вентури. В качестве измерительных приборов применяются различные дифференциальные манометры, рассмотренные снабженные показывающими, записывающими, интегрирующими, сигнализирующими и другими устройствами, обеспечивающими выдачу измерительной информации о расходе в соответствующей форме и виде.

 Измерительная диафрагма представляет собой диск, установленный так, что центр его лежит на оси трубопровода (рис. VIII.1). При протекании потока жидкости или газа (пара) в трубопроводе с диафрагмой сужение его начинается до диафрагмы. На некотором расстоянии за ней под действием сил инерции поток сужается до минимального сечения, а далее постепенно расширяется до полного сечения трубопровода. Перед диафрагмой и после нее образуются

зоны завихрения. Давление струи около стенки вначале возрастает из-за подпора перед диафрагмой. За диафрагмой оно снижается до минимума, затем снова повышается, но не достигает прежнего значения, так как вследствие трения и завихрений происходит потеря давления рпот.

 Таким образом, часть потенциальной энергии давления потока переходит в кинетическую. В результате средняя скорость потока в суженном сечении повышается, а статическое давление в этом сечении становится меньше статического давления перед сужающим устройством. Разность этих давлений (перепад давления) служит мерой расхода протекающей через сужающее устройство жидкости, газа или пара.

 Из рис. VIII.1 видно, что давление по оси трубопровода, показанное штрихпунктирной линией, несколько отличается от давления вдоль стенки трубопровода только в средней части графика. Через отверстия 1 и 2 производится измерение статических давлений до и после сужающего устройства.

12. Расходомеры постоянного перепада давления. Принцип действия ротаметра.

Расходомеры постоянного перепада давления.

 Принцип действия расходомеров обтекания (постоянного перепада давления)

 основан на зависимости перемещения тела, находящегося в потоке и воспринимающего динамическое давление обтекающего его потока, от расхода вещества. Широко распространенными расходомерами обтекания являются расходомеры постоянного перепада давления — ротаметры, поплавковые и поршневые. Принцип действия расходомеров постоянного перепада давления основан на зависимости от расхода вещества вертикального перемещения тела — поплавка, находящегося в потоке и изменяющего при этом площадь проходного отверстия прибора таким образом, что перепад давления по обе стороны поплавка остается постоянным.

 В некоторых расходомерах обтекания, называемых расходомерами обтекания компенсационного -типа, перемещение тела обтекания измеряется по величине давления, создающего усилие, приложенное к телу и уравновешивающее динамическое давление потока на него.

Ротаметры

 Расходомеры постоянного перепада давления — ротаметры — применяются для измерения расходов однородных потоков чистых и слабозагрязненных жидкостей и газов, протекающих ..... по трубопроводам и не подверженных значительным колебаниям. Особенно широко они используются в винодельческом, спиртовом, ликерно-водочном и других производствах. Ротаметр (рис. VIII.4) представляет собой длинную коническую трубку 1, располагаемую вертикально, вдоль которой под действием движущегося снизу вверх потока перемещается поплавок 2. Поплавок перемещается до тех пор, пока площадь кольцевого отверстия между поплавком и внутренней поверхностью конусной трубки не достигнет такого размера', 'при котором перепад давления по обе стороны поплавка не станет равным расчетному. При этом действующие на поплавок силы уравновешиваются, а поплавок устанавливается на высоте, соответствующей определенному значению расхода.

 Рассмотрим силы, действующие на поплавок. Масса поплавка в рабочем состоянии, т. е. при полном погружении в измеря Поплавковые и поршневые расходомеры -

 Поплавковый расходомер постоянного перепада давления (рис. VIII.5) состоит из поплавка 1 и конического седла 2, расположенных в корпусе прибора (отсчетное устройство на схеме не показано) . Коническое седло выполняет ту же роль, что и коническая трубка ротаметра. Различие заключается в том, что длина и диаметр седла примерно равны, а у ротаметров длина конической трубки значительно больше ее диаметра

В поршневом расходомере (рис. VIII.6) чувствительным элементом является поршень /, перемещающийся внутри втулки 2. Втулка имеет входное отверстие 5 и выходное отверстие 4, которое является диафрагмой переменного сечения. Поршень с помощью штока соединен с сердечником передающего преобразователя 3. Протекающая через расходомер жидкость поступает под поршень и поднимает его. При этом открывается в большей или меньшейемую среду (в кг), тепени отверстие выходной диафрагмы. Жидкость, протекающая через диафрагму, одновременно 'заполняет также пространство над поршнем, что создает противодействующее усилие

Вихревые расходомеры

В настоящее время разработаны и имеют весьма широкие перспективы применения вихревые расходомеры, принцип действия которых основан на зависимости от расхода частоты колебаний давления среды, возникающих в потоке в процессе вихреобразования. Измерительный преобразователь вихревого расходомера (рис. VIII.19) представляет собой завихритель 1, вмонтированный в трубопровод, с помощью которого поток, завихряется (закручивается) и поступает в патрубок 2. На выходе из патрубка в расширяющейся области 4 установлен электроакустический преобразователь 3, воспринимающий и преобразующий вихревые колебания потока в электрический сигнал, который далее приводится к нормализованному виду, отвечающему требованиям ГСП.

 Завихрения потока формируются таким образом, что внутренняя область вихря — ядро, поступая в патрубок 2, совершает только вращательное движение. На выходе же из патрубка в расширяющуюся область 4 ядро теряет устойчивость и начинает асимметрично вращаться вокруг оси патрубка.

Ультразвуковые расходомеры

Для измерения расходов загрязненных, агрессивных и быстро-кристаллизующихся жидкостей и пульп, а также потоков, в которых возможны большие изменения (пульсации) расходов и даже изменения направления движения, когда не могут быть применены другие виды расходомеров, используются расходомеры акустические, чаще всего ультразвуковые. Преимуществами акустических расходомеров также являются бесконтактность измерений, отсутствие движущихся частей в потоке, отсутствие потерь давления в трубопроводах и др.

Принцип действия акустических расходомеров основан на зависимости акустического эффекта в потоке от расхода вещества. Известно несколько методов использования звуковых (ультразвуковых) колебаний для измерения расходов жидкостей и газов. Акустический расходомер,работающий по двухканальной фазовой схеме (рис. VIII.20), состоит из ультразвуко­вого генератора УЗГ, являющегося источником питания; излучающих пьезо-преобразователей ИП1 и ИП2; прием­ных пьезопреобразователей ПП1 и ПП2; фазовращающего устройства ФУ для устранения путем асимметрии ка­налов преобразователей возникающих фазовых сдвигов;' электронного усилителя Ус и измерительного прибора ИП, который градуируется в единицах расхода. В качестве пьезоэлементов в преобразователях чаще всего применяются пластины из титаната бария, могут также использоваться пьезоэлементы из кварца, титанато-циркониевой керамики, а также магнитострикционные.

Импульсы ультразвука посылаются под углом к оси трубопровода так, что их направление в одном канале совпа­дает с направлением потока, а в другом направлено против потока. При отсутствии движения жидкости время передачи импульса т (в с) на расстояние d

Разновидностью акустических уровнемеров являются ультразвуковы е уровнемеры.

Действие уровнемеров этого типа основано на измерении времени прохождения импульса ультразвука от излучателя до поверхности жидкости и обратно. Электронный блок служит для формирования излучаемых ультразвуковых импульсов, усиления отраженных импульсов, измерения времени прохождения импульсом двойного пути (в воздухе или жидкости) и преобразования этого времени в унифицированный электрический сигн

Наиболее современным является радарный уровнемер. Принцип действия его основан на измерении времени переотражения от поверхности раздела газ – контролируемая среда высокочастотных радиоволн. Последний тип уровнемера позволяет производить измерение уровня, как жидкостей, так и сыпучих тел. При этом его можно использовать и при измерении уровня агрессивных сред, например кислот, расплавленной серы, аммиака и т.д.

В последнее время получают распространение ультразвуковые расходомеры, в которых используется эффект Допплера , заключающийся в том, что ультразвуковые волны, генерируемые излучателями, отражаются от взвешенных частиц, завихрений, пузырьков газа и т. п. в потоке измеряемой среды и воспринимаются приемниками отраженных излучений. Разность между частотами излучаемых и отраженных акустических волн позволяет определить скорость потока.

Измерительный преобразователь таких расходомеров представляет собой устройство, состоящее из двух пьезокристаллов, один из которых является генератором ультразвуковых колебаний, излучаемых под утлом к потоку измеряемой среды, а второй — приемником отраженных колебаний. Излучаемый и отраженный сигналы сравниваются с помощью специальных электронных устройств. В настоящее время акустические расходомеры интенсивно разрабатываются, и в ближайшее время, очевидно, предстоит их широкое применение в различных отраслях пищевой промышленности.

 

 

15.Тахометрические и маркерные расходомеры.

Тахометрическими называются расходомеры и счетчики, имеющие подвижный, обычно вращающийся элемент, скорость движения которого пропорциональна объемному расходу. Принцип действия тахометрического водосчетчика (расходомера) основан на измерении скорости вращения или подсчете оборотов помещенной в поток крыльчатки или турбины. Разница между тем и другим подвижными элементами состоит в том, что ось вращения крыльчатки расположена перпендикулярно, а турбины — параллельно направлению движения потока. Все тахометрические расходомеры (счетчики) являются энергонезависимыми.

Тахометрические расходомеры делят на:

-скоростные; -турбинные; -шариковые; -роторно-шаровые; -камерные.

Скоростные При измерении скорости движения подвижного элемента получаем расходомер, а измеряя общее число его оборотов — счетчик количества прошедшего вещества. Наибольшее распространение получили счетчики воды и газа, так как для этого надо лишь соединить вал турбинки или другого преобразователя расхода через зубчатый редуктор со счетным механизмом.

Для создания тахометрического расходомера скорость движения элемента предварительно преобразуют в сигнал, пропорциональный расходу и удобный для измерения, для чего необходим двухступенчатый преобразователь расхода:первая ступень — турбинка (шарик или другой элемент), скорость движения которой пропорциональна объемному расходу;вторая ступень — тахометрический преобразователь, который вырабатывает измерительный сигнал (частоту электрических импульсов), пропорциональный скорости движения тела.

Крыльчатые и турбинные расходомеры применяются для измерения расхода различных жидкостей за исключением очень вязких и загрязненных, При диаметрах трубопроводов от 15 до 40 мм применяются крыльчатые расходомеры, а от 50 до 250 мм — турбинные. На рис. 1, а схематично показано устройство турбинного преобразователя расхода жидкости.

Рис. 1. Устройство турбинных преобразователей расхода:

Дата: 2019-07-24, просмотров: 326.