Электрические цепи постоянного тока. Элементы э/цепи. Источники и потребители э/энергии. Граф изобр-е э/цепи. Идеальные элементы цепи и схемы их замещения. Линейные и нелинейные элементы.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Электрические цепи постоянного тока. Элементы э/цепи. Источники и потребители э/энергии. Граф изобр-е э/цепи. Идеальные элементы цепи и схемы их замещения. Линейные и нелинейные элементы.

Электрической цепью называют совок-ть устр-в, предназнач-х для получения, передачи, преобразования и использования э/энергии. Это совок-ть элементов, ч/з которые замыкается электрический ток. Э/цепь состоит из отдельных устр-в – элементов э/цепи.

Источниками э/э являются электрические генераторы, в кот. механическая энергия преобразуется в электрическую, а также первичные элементы и аккумуляторы, в кот. происходит преобразование химической, тепловой, световой и др. видов э-гии в электрическую.

К потребителям э/э относятся электродвигатели, различные нагревательные элементы, световые приборы и др.

Электрическая схема  - это графическое изображение эл. цепи, включающее в себя условные изобр-я устройств и показывающее соединение этих устр-в. На рис. изображены э/схема и схем замещения.

Схема замещения – это граф. изобр-е цепи с помощью идеалных элементов, параметрами кот. явл-ся параметры замещаемых элементов.

Идеальные элементы – это элементы, которые при всех условиях обладают только одним параметром: только сопротивлением, только индуктивностью, только ёмкостью.

 Резистор, кат. индуктивности, конденсатор.

Сопротивление проводника определяется по формуле где ро – удельное сопротивление проводника, l – длина проводника, S – площадь сечения.

Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Индуктивностью обладают катушки индуктивности.  Индуктивность катушки, измеряемая в Генри [Гн], может определяться по формуле , где W – число витков катушки, Ф – магнитный поток, возбуждаемый током i.

Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Полагают, что емкостью обладают только конденсаторы. Емкость конденсатора, измеряемая в фарадах (Ф), может определяться по формуле:  , где q – заряд на обкладках конденсатора, а Uc – напряжение на конденсаторе.

Сопротивления, вольтамперной характеристикой (ВАХ) которых являются прямые линии, н-ют линейными, а э/цепи только с линейными сопротивлениями – линейными э/цепями. Сопротивления, ВАХ которых не являются прямыми линиями, называют нелинейными, а э/цепи только с нелинейными сопротивлениями – нелинейными э/цепями.

Пунктиром обозначена ВАХ нелинейного сопротивления.

Идеальные источники ЭДС и тока и их характеристики. Уравнения состояния электрической цепи с реальными источниками ЭДС и тока. Внешняя ВАХ источника питания и режимы его работы. Согласованный режим работы источника.

Источники э/энергии делятся на источники постоянного тока (гальванические элементы, аккумуляторы постоянного тока, генераторы) и переменного тока. Электрические свойства источника э/э (генератора) характеризуются его внутренним сопротивлением R в  - сопротивлением электрическому току всех элементов источника (генератора). Генератор с Rв=0 называется источником напряжения. Если Rв>>0, то ток практически не зависит от сопротивления самой цепи.

Условные обозначения: гальван. элемент (батарейка), термоэлемент, фотоэлемент, генераторы (пост. тока и перем. тока)

Линейные электрические цепи. Виды соединений элементов цепей. Неразветвлённые и разветвлённые цепи. Определение эквивалентных сопротивлений разветвлённых электрических цепей. Метод свёртки. Метод проводимостей.

Линейные электрические цепи – это электрические цепи, в которых параметры элементов (сопротивление и др.) не зависят от тока в них.

Виды соединений элементов цепей:

Соединение элементов может быть последовательным, параллельным и смешанным.

1. Последовательное соединение

На рисунке R1, R2, R3 - нагрузочные сопротивления (потребители). При последовательном соединении потребителей сила тока в них одинакова, а напряжение U на зажимах цепи равно сумме падений напряжений на ее участках:

.

По закону Ома можно записать:

 

,

отсюда общее сопротивление цепи равно:

.

2. Параллельное соединение

 

 

 

При параллельном соединении напряжение на всех потребителях одинаково, а ток в неразветвленной части цепи равен сумме токов параллельно соединенных участков:

.

По закону Ома:

,

откуда

.

3. Смешанное соединение

Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.

 

Электрические цепи в зависимости от количества ветвей делятся на неразветвленные (одноветвевые) и разветвленные (имеющие несколько ветвей)

Определение эквивалентных сопротивлений разветвлённых электрических цепей:

 

Rэ= R1+R23

 

Метод свертки:

Суть метода состоит в замене последовательно или параллельно соединенных резисторов, или сопротивлений на Rэ. По уравнению состояния простого контура находят ток в неразветвленной части цепи. Посредством обратного преобразования находят токи во всех ветвях.

Rэ= R1+R23

Метод проводимостей (нашел только пример)

 

 

Баланс мощностей

Мощность, определяющая непроизводительный расход энергии, например, на тепловые потери в источнике, называется мощностью потерь.

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь.

Это выражение представляет собой баланс мощности электрической цепи.

Для рассмотренной выше схемы независимой проверкой является составление уравнения баланса мощностей с учетом режимов работы элементов схемы с ЭДС:

.

Если активная мощность, поставляемая источниками питания, равна по величине активной мощности, израсходованной в пассивных элементах электрической цепи, то правильность расчетов подтверждена.

7. Методы расчёта сложных разветвлённых цепей постоянного тока. Взаимное преобразование схем соединений треугольником и звездой пассивных элементов цепи

Методы расчёта сложных разветвлённых цепей постоянного тока:

1. С помощью уравнений электрического состояния (1 и 2 законы Кирхгофа)

2. Метод наложения

Используется для линейной электрической цепи. Заключается в том, что если цепь подвергается воздействию нескольких источников ЭДС одновременно, то реакция (ток) цепи на эти источники будет равна алгебраической сумме реакций (токов) на каждое воздействие отдельно.

3. Метод контурных токов

В качестве промежуточных переменных выбирают токи, замыкающиеся в каждом контуре и их называют контурными токами. Метод выгоден тогда, когда

4. Метод узлового напряжения

Если цепь имеет 2 узла или путем не сложных преобразований может быть приведена к 2 узлам, то используется метод узлового напряжения.

5. Метод эквивалентного источника

Суть метода эквивалентного генератора состоит в нахождении тока в одной выделенной ветви, при этом остальная часть сложной электрической цепи заменяется эквивалентным ЭДС Еэкв, с её внутренним сопротивлением rэкв. При этом часть цепи, в которую входит источник ЭДС называют эквивалентным генератором или активным двухполюсником, откуда и название метода.

 

 

Электрические цепи однофазного переменного тока. Переменные ЭДС, напряжения и токи. Цепи синусоидального тока. Основные характеристики синусоидальных электрических величин. Мгновенное, амплитудное и действующее значения. Среднее значение синусоидальной величины.

Переменным называется ток, который изменяется в течение времени по величине или направлению. Переменный ток получил преимущественное распространение в промышленности, что связано с его преимуществами перед постоянным током:

− легко повышается и понижается напряжение с помощью трансформаторов;

− генераторы и двигатели переменного тока проще по устройству, в эксплуатации, надежней и дешевле;

− переменный ток удобнее вырабатывать на электростанциях;

− многие физические явления проявляются только при переменном токе.

− В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все токи и напряжения являются синусоидальными функциями времени. Синусоидальная форма тока и напряжения позволяет производить точный расчет электрических цепей с использованием метода комплексных чисел и приближенный расчет на основе метода векторных диаграмм.

Недостатки: в цепях питания потребителей таким током могут происходить перегрузки, вызванные реактивной мощностью потребителей (когда в цепи питания присутствуют индуктивности или емкости); переменный ток приводит к образованию переменных электромагнитных полей, воздействующих на работу различной радиоаппаратуры и др.

Мгновенное значение (ЭДС или напряжения или тока) - значение величины в данный момент времени. обозначается чаще всего маленькими буквами: e, u,i.

Амплитудное значение (ЭДС или напряжения или тока) - максимальное значение.

Представления синусоидальных ЭДС, напряжений и токов виде вращающихся векторов и в виде комплексных величин. Комплексные амплитуды синусоидальных ЭДС, напряжения и тока. Оператор поворота комплексной амплитуды и соответствующая векторная диаграмма.

 

(Нарисовать 3 таких рисунка, над векторами подписать I, U, R на разных рисунках).

Длина отрезка ОА в принятом масштабе равна амплитуде тока (ЭДС, напряжения). Проекция вектора на ось ординат (ОВ) равна мгновенному значению тока (ЭДС, напряжение) в момент времени. При вращении вектора в положительном направлении (т.е. против часовой стрелки) с угловой скоростью в любой момент времени его проекция на ось ординат будет равна соответствующему мгновенному значению тока (ЭДС, напряжение):

i=Imsin(ωt+φi) (e=Emsin(ωt+φi); u=Umsin(ωt+φi))

Любой вектор на плоскости, проведенный из начала координат и изображающий значение ЭДС, напряжения или тока, однозначно определяется точкой, соответствующей концу этого вектора (т. А).

Комплексное число (соответствующее точке ) имеет вещественную (ОС) и мнимую (ОВ) составляющие на комплексной плоскости.

Соответственно формулы для тока, ЭДС и напряжения будут выглядеть так:

Im= Imej𝜓= Imcos𝜓i+ jImsin𝜓i

Em= Emej𝜓= Emcos𝜓i+ jEmsin𝜓i

Um= Umej𝜓= Umcos𝜓i+ jUmsin𝜓i

j- оператор поворота комплексной амплитуды

Рис. 1. Схема синхронной машины:

В — обмотка возбуждения, Uв — напряжение В цепи возбуждения

Результирующий магнитный поток создается совместным действием обмоток возбуждения и статора и вращается с той же частотой, что и ротор, поэтому такие машины называются синхронными.

В схеме на рис. 1 статор является якорем, а ротор — индуктором (возбудителем), но может быть и обращенная схема, в которой статор — индуктор, а ротор — якорь как у машины постоянного тока.

При вращении ротора с частотой n2 его магнитное поле возбуждения наводит в статоре ЭДС E1, частота которой

f1=p*n2/60

Из формулы следует, что чем больше число пар полюсов синхронной машины p*, тем меньше должна быть ее скорость вращения п для получения заданной частоты fi.

Поэтому синхронные генераторы обычно выпускают явнополюсными с большим числом пар полюсов.

Закон Ампера

Поясняет взаимное преобразование электроэнергии в механич. Он установил связь между магнитным полем и проводником с эл. током В этом случае со стороны магнитного поля действует сила на проводник, величина которой определяется выражением

Направление силы определяется по правилу левой руки .

Вывод. Для превращения электроэнергии в механическую необходимо наличие выполнения 2-х условий:

Наличие магнитного поля.

Проводника с током

С помощью закона ампера поясняется принцип действия электродвигателей.

5-2

Если нагрузка несимметрична и соединяется по схеме Y то токи в фазах не равны, следовательно, падения напряжений в фазах не одинаково что приводит к перекосу фазных напряжений, т.е. . Это сильно влияет на работу нагрузки и потребители могут выходить из строя, для того чтобы этого не случилось при несимметричной нагрузке обязательно используют 0-й или нейтральный провод, который соединяет нулевые точки потребителей и генераторов или трансформаторов.

По I закону Кирхгофа: ; если нет нулевого провода то напряжение меняется. Основное назначение 0-го провода – выравнивание фазного напряжения.

Векторная диаграмма для 4-х проводной 3-х фазной системы.

Активные и пассивные элементы цепей переменного тока. Идеальные элементы R , L и C в цепи переменного тока. Векторные диаграммы для напряжений. Цепи переменного тока со смешанным соединением элементов R , L и C . Векторная диаграмма для последовательного соединения элементов. Активное, реактивное и полное сопротивление цепи. Треугольник сопротивлений и треугольник мощностей.

Активные элементы вносят энергию в электрическую цепь, а пассивные ее потребляют.

Пассивные элементы:

Резистивным сопротивлением называется идеализированный элемент электрической цепи, обладающий свойством необратимого рассеивания энергии. Напряжение и ток на резистивном сопротивлении связаны между собой: u = iR, i = Gu. Коэффициент R -сопротивление и G –проводимость. Индуктивным элементом называется идеализированный элемент электрической цепи, обладающий свойством накопления им энергии магнитного поля. Линейная индуктивность характеризуется зависимостью между потокосцеплением ψ(пси) и током i, ψ = Li. Напряжение и ток связаны u = dψ/dt = L(di/dt) L – индуктивность. Емкостным элементом называется идеализированный элемент электрической цепи, обладающий свойством накапливания энергии электрического поля. Линейная емкость характеризуется линейной зависимостью между зарядом и напряжением, q = Cu (С - емкость). Напряжение и ток емкости связаны i = dq/dt =C(du/dt).

Активные элементы электрических цепей элементы цепи, которые отдают энергию в цепь, т.е. источники энергии. Существуют независимые и зависимые источники. Независимые источники: источник напряжения и источник тока. Источник напряжения - идеализированный элемент электрической цепи, напряжение на зажимах которого не зависит от протекающего через него тока. Внутреннее сопротивление идеального источника напряжения равно нулю. Источник тока – это идеализированный элемент электрической цепи, ток которого не зависит от напряжения на его зажимах.

В цепях переменного тока выделяют следующие виды сопротивлений.

Активное. Активным называют сопротивление резистора. Единицей измерения сопротивления является Ом. Сопротивление резистора не зависит от частоты.

Реактивное. В разделе реактивные выделяют три вида сопротивлений: индуктивное xL и емкостное хс и собственно реактивное. Для индуктивного сопротивления выше была получена формула XL = ωL. Единицей измерения индуктивного сопротивления также является Ом. Величина xL линейно зависит от частоты.

Для емкостного сопротивления выше была получена формула XC = 1 / ωC. Единицей измерения емкостного сопротивления является Ом. Величина хс зависит от частоты по обратно-пропорциональному закону. Просто реактивным сопротивлением цепи называют величину X = XL - XC.

Полное сопротивление. Полным сопротивлением цепи называют величину

.

Из этого соотношения следует, что сопротивления Z, R и X образуют треугольник: Z – гипотенуза, R и X – катеты. Для удобства в этом треугольнике рассматривают угол φ, который определяют уравнением

φ = arctg((XL - XC) / R),

и называют углом сдвига фаз.

Для варианта XL > XC угол φ > 0, UL > UC. Ток отстает от напряжения на угол φ. Цепь имеет активно-индуктивный характер. Векторная диаграмма напряжений имеет вид.

Для варианта XL < XC угол φ < 0, UL < UC. Ток опережает напряжение на угол φ. Цепь имеет активно-емкостный характер. Векторная диаграмма напряжений имеет вид.

Для варианта XL = XC угол φ = 0, UL = UC. Ток совпадает с напряжением. Цепь имеет активный характер. Полное сопротивление z=R наименьшее из всех возможных значений XL и XC. Векторная диаграмма напряжений имеет вид.

Этот режим называется резонанс напряжений (UL = UC). Напряжения на элементах UL и UC могут значительно превышать входное напряжение.

В случае смешанного соединения имеются участки с последовательным и параллельным соединением элементов.

Расчет схемы можно начать с определения общего сопротивления цепи формуле:

.

Далее определим ток, потребляемый из источника (входной ток):

.

Зная ток можно найти падения напряжений на участках цепи. На участке 1-2:   , а на участке 2-3:  .

По найденным напряжениям рассчитаем токи IR2 и IL:

и .

Параллельное соединение идеальных элементов R , L и C в цепи переменного тока. Метод проводимостей. Векторная диаграмма для токов в цепи. Активная, реактивная и полная проводимости цепи. Треугольник проводимостей и треугольник мощностей.

       Цепь с параллельным соединением элементов состоит из ряда параллельных ветвей, включенных между двумя узлами.

 

       По первому закону Кирхгофа для токов можно записать:

.

       Действующие значения токов в отдельных ветвях будут определяться:

, , .

       Построение векторных диаграмм для параллельного соединения элементов цепи начинают с вектора U (т.к. оно одинаково для всех участков цепи).

       Цепь в зависимости от соотношения сопротивлений xL и xC также может иметь индуктивный, емкостный или чисто активный характер.

 

 

           

На построенных диаграммах можно выделить треугольник токов.

IA - активная составляющая тока;

IP - реактивная составляющая тока.

Связь между полным током и его составляющими выражается:

 

.

 

Метод проводимостей: При этом ток каждой ветви рассматривают состоящим из двух составляющих: активной и реактивной .

,

где - активная проводимость ветви

, где

,

где - реактивная проводимость ветви

, где

где

- полная активная проводимость цепи;

- полная реактивная проводимость цепи.

, где

- полная проводимость цепи.

.

Трехфазные электрические цепи. Основные преимущества трехфазной электрической цепи. Трехфазная ЭДС и ее векторная диаграмма. Получение трехфазной ЭДС. Трехфазный генератор. Несвязанная (шестипроводная) и связанная (четырехпроводная) линии передачи электрической энергии.

Трехфазная цепь представляет собой совокупность электрических цепей, в которых действуют три синусоидальные э.д.с. одинаковой частоты, отличающиеся по фазе одна от другой ( φ = 120о) и создаваемые общим источником энергии.

Основные преимущества трехфазной системы: возможность простого получения кругового вращающегося магнитного поля (это позволило создать электродвигатели переменного тока), экономичность и эффективность (мощность можно передать по трем фазным проводам без применения четвертого общего провода -нейтрали), а также возможность использования двух различных эксплуатационных напряжений в одной установке (фазного и линейного, которые обычно составляют 220 В и 380 В, соответственно). Трехфазный ток является простейшей системой многофазных токов, способных создавать вращающееся магнитное поле. Трехфазная цепь состоит из трехфазного генератора, трехфазной линии электропередач и трехфазных приемников.

       В результате предложенной трехфазной системы электрического тока стало возможным эффективно преобразовывать электрический ток в механическую энергию.

Получение трехфазного тока

Электрическую энергию трехфазного тока получают в синхронных трехфазных генераторах.

 Три обмотки 2 статора 1 смещены между собой в пространстве на угол 120°. Их начала обозначены буквами А, В, С, а концы – x, y, z. Ротор 3 выполнен в виде постоянного электромагнита, магнитное поле которого возбуждает постоянный ток I, протекающий по обмотке возбуждения 4. Ротор принудительно приводится во вращение от постороннего двигателя. При вращении магнитное поле ротора последовательно пересекает обмотки статора и индуктирует в них ЭДС, сдвинутые (но уже во времени) между собой на угол 120°.

Трехфазный синхронный генератор

 

 

 

 Для симметричной системы ЭДС справедливо

 

 Волновая и векторная диаграммы симметричной системы ЭДС

 

На диаграмме изображена прямая последовательность чередования фаз (пересечение ротором обмоток в порядке А, В, С). При смене направления вращения чередование фаз меняется на обратное - А, С, В. От этого зависит направление вращения трехфазных электродвигателей.

Шестипроводная схема используется в случае необходимости подключения удаленного моста. При использовании моста появляется проблема зависимости сопротивления резисторов включенных в мост от его нагревания. Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система.

Четырехпроводный метод подключения, позволяет измерять сопротивление удаленного резистора без учета сопротивления соединительных проводов. Как видно из рисунка, измеряемое сопротивление подключается к интерфейсной схеме при помощи четырех проводов. Два провода подсоединяются к источнику тока, а два оставшихся провода - к вольтметру. Источник постоянного тока имеет очень высокое выходное сопротивление, поэтому ток в цепи практически не зависит от сопротивлений r в контуре.

Соединения фаз генератора по схеме звезда. Трехпроводная линия передачи электрической энергии. Трехфазная электрическая цепь с соединением фаз нагрузки по схеме звезда. Соотношения между фазными и линейными напряжениями и токами. Симметричная нагрузка. Векторные диаграммы для напряжений и токов.

 

В генераторах трехфазного тока электрическая энергия генерируется в трех одинаковых обмотках, соединенных по схеме звезда. Чтобы сэкономить на проводах линии передачи электроэнергии от генератора к потребителю тянутся только три провода. Провод от общей точки соединения обмоток не тянется, т.к. при одинаковых сопротивлениях нагрузки (при симметричной нагрузке) ток в нем равен нулю.

                                                                               

Схема замещения трехфазной системы, соединенной "звездой"

 

Согласно первому закону Кирхгофа можно записать IO = IА+ IВ + IС.

При равенстве ЭДС в фазных обмотках генератора и при равенстве сопротивлений нагрузки (т.е. при равенстве значений токов IА,IВ,IС) в представленной на рисунке системе, с помощью векторных диаграмм можно показать, что результирующий ток IO в центральном проводнике будет равен нулю. Таким образом, получается, что в симметричных системах (когда сопротивления нагрузок одинаковы), центральный провод может отсутствовать и линия для передачи системы трехфазного тока может состоять только из трех проводов.

Напряжение между фазными проводами в линии принято называть линейным напряжением, а напряжение, измеренное между фазным проводом (фазой) и центральным – фазным напряжением.

В системах электроснабжения, в частности в генераторах и трансформаторах подстанций используется преимущественно соединения звездой.


Четырехпроводная трехфазная система передачи электрической энергии. Несимметричная нагрузка. Роль нулевого провода. Векторные диаграммы напряжений и токов в случае симметричной и несимметричной нагрузки.

Четырехпроводная трехфазная система передачи электрической энергии.

Трехфазной называется цепь переменного тока, состоящая из источника трехфазной симметричной системы э.д.с., трехфазной, двухфазной или однофазной нагрузки и соединяющих их проводов. При присоединении фаз источника энергии и приемника звездой ( условное обозначение Y ) все концы фазных обмоток генератора соединяют в общий узел О ( рис. 1 ); такой же узел О образуется соединение трех фаз Za, Zb, Zc приемника, а три обратных провода фаз системы объединяют в один общий нейтральный или нулевой провод О-О. Остальные три провода, соединяющие генератор с приемниками, называют линейными.

                            

Рисунок 1

Для расчета трехфазной цепи применимы все методы, используемые для расчета линейных цепей. Обычно сопротивления проводов и внутреннее сопротивление генератора меньше сопротивлений приемников, сопротивления проводов можно не учитывать (ZЛ = 0, ZN = 0). Тогда фазные напряжения приемника Ua, Ub и Uc будут равны соответственно фазным напряжениям источника электрической энергии, т.е. Ua = U A ; Ub = U B ; U c = U C . Если полные комплексные сопротивления фаз приемника равны Za = Zb = Z c, то токи в каждой фазе можно определить по формулам:

İa = Úa / Za;

İb = Úb / Z b ;

İ c = Ú c / Z c .

В соответствии с первым законом Кирхгофа ток в нейтральном проводе:

İN = İa + İb + İc = İA + İB + İC.

Несимметричная нагрузка .

Несимметричной называется трехфазная нагрузка, комплексные сопротивления фаз которой неодинаковы. На практике такая нагрузка часто встречается при подключении различных однофазных потребителей электроэнергии к трехфазной цепи, при этом каждый однофазный потребитель является фазой трехфазной нагрузки. Фазы нагрузки часто соединяются в звезду, нейтраль которой соединяется с нейтралью генератора.

Роль нулевого провода.

Ток в нейтральном или нулевом проводе Io считают обратным и направляют его от нагрузки к генератору( рис.1). Напряжения на фазах нагрузки Uф равны напряжениям на фазах генератора, т.е. . Так как нулевой провод выравнивает потенциалы нейтральных точек О нагрузки и генератора, то, следовательно, этот провод выравнивает фазные напряжения UA=UB=UC=UO . Нейтральный провод через определенные расстояния соединяют с заземляющими контурами, поэтому его потенциал равен нулю и его называют также нулевым проводом.

Векторные диаграммы напряжений и токов в случае симметричной и несимметричной нагрузки.

 

 

Трёхфазная электрическая цепь с соединением фаз электроприемника по схеме треугольник. Соотношения между фазными и линейными напряжениями и токами. Векторные диаграммы для напряжений и токов. Схема с несимметричной нагрузкой.

 

Трёхфазная электрическая цепь с соединением фаз электроприемника по схеме треугольник.

При соединении источника питания треугольником конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к приемникам. (условное обозначение ).        

Соотношения между фазными и линейными напряжениями и токами.

Соединение фаз источника в замкнутый треугольник возможно при симметричной системе ЭДС, так как ĖA + ĖB + ĖC = 0. Напряжение между концом и началом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению: UЛ = UФ. В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным. Токи в фазах приемника определяются по формулам

İab = Úab / Zab;

İ = Ú / Z;

İсa= Úсa / Zсa.

Линейные токи можно определить по фазным, составив уравнения по первому закону Кирхгофа для узлов a, b и c:

İA = İab - İсa;

İB = İ - İab;

İC = İсa - İ.

Сложив левые и правые части системы уравнений, получим: İA + İB + İC = 0.

С помощью векторной диаграммы, показывающей систему трехфазного тока соединенного звездой , легко установить, что соотношение между фазным и линейным напряжениями будет: Uл = 2(Uф sin60о) = √3 Uф.

 

Это соотношение справедливо при определенных условиях также в случае отсутствия нейтрального провода, т. е. в трехпроводной цепи.

На основании указанного соотношения можно сделать вывод о том, что соединение звездой следует применять в том случае, когда каждая фаза трехфазного приемника или однофазные приемники рассчитаны на напряжение в √3 раз меньшее, чем номинальное линейное напряжение сети.

 

Векторные диаграммы для напряжений и токов

 

 

На векторной диаграмме фазные токи отстают от фазных напряжений на угол φ (полагаем, что фазы приемника являются индуктивными, т.е. φ > 0°). Линейный ток İ A отстает по фазе от фазного тока İ ab на угол 30°, на этот же угол отстает İB от İ, İC от İсa.

Таким образом, при соединении треугольником:

Фазное напряжение UФ = UЛ. Фазный ток IФ = UФ / ZФ,

Линейный ток IЛ = √3 IФ, Угол сдвига по фазе φ = arctg (XФ / RФ).

 

Схема с несимметричной нагрузкой.

Процессы в магнитопроводе при переменных (синусоидальных) МДС. Идеальная и реальная индуктивная катушки в цепи переменного тока. Уравнение трансформаторной ЭДС и его применение для расчёта магнитных цепей.

Рассмотрим идеальную индуктивную катушку, активное сопротивление которой равно нулю. Пусть по идеальной катушке с индуктивностью L протекает синусоидальный ток . Этот ток создает в индуктивной катушке переменное магнитное поле, изменение которого вызывает в катушке ЭДС самоиндукции

Эта ЭДС уравновешивается напряжением, подключенным к катушке:

u = eL = 0.

 (1)

Таким образом, ток в индуктивности отстает по фазе от напряжения на 90o из-за явления самоиндукции.

Уравнение вида (1) для реальной катушки, имеющей активное сопротивление R, имеет следующий вид:

(2)

 

ЭДС самоиндукции оказывает сопротивление протеканию переменного тока, из-за чего ток в реальной индуктивной катушке отстает по фазе от напряжения на некоторый угол φ (0o< φ < 90o), величина которого зависит от соотношения R и L. Выражение (2) в комплексной форме записи имеет вид:

где ZL - полное комплексное сопротивление индуктивной катушки ;

  ZL - модуль комплексного сопротивления;

- начальная фаза комплексного сопротивления;

- индуктивное сопротивление (фиктивная величина, характеризующая реакцию электрической цепи на переменное магнитное поле).

  Полное сопротивление индуктивной катушки или модуль комплексного сопротивления .

Катушка индуктивности — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности , зависящая только от геометрических размеров и материалов и не зависящая от режима работы... Реальная катушка индуктивности обладает индуктивным сопротивлением X=w*L =2*Pi*f*L f-частота тока,L-индуктивность катушки. и омическим сопротивлением R. Идеальная -только индуктивным X=2*Pi*f*L.

                                                                                                         

Действующее значение ЭДС в первичной обмотке

.


Для вторичной обмотки можно получить аналогичную формулу

.

Электродвижущие силы E1 и E2, индуктированные в обмотках трансформатора основным магнитным потоком, называются трансформаторными ЭДС. Трансформаторные ЭДС отстают по фазе от основного магнитного потока на 90°.
Магнитный поток рассеяния индуктирует в первичной обмотке ЭДС рассеяния

,

где L1s - индуктивность рассеяния в первичной обмотке.
Запишем уравнение по второму закону Кирхгофа для первичной обмотки

,

откуда

. (1)




Назначение, устройство, принцип действия трансформаторов. Идеальный однофазный трансформатор и его уравнение электрического состояния. Активный и пассивный двухполюсники. Представление однофазного трансформатора в виде пассивного двухполюсника. Опыты холостого хода и короткого замыкания идеального однофазного трансформатора.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования одних значений тока и напряжения и другие значения той же частоты.

Он состоит из замкнутого ферромагнитного сердечника, на котором размещены обмотки. Обмотка, подключенная к источнику энергии, называется первичной. Обмотки, подключенные к сопротивлениям нагрузки, называются вторичными. Сердечник трансформатора применяется для уменьшения вихревых токов.

Под действием переменного напряжения в первичной обмотке возникает ток, и в сердечнике возбуждается переменный магнитный поток. При подключении нагрузки во вторичной обмотке возникает ток и из первичной обмотки во вторичную передается эл энергия. 

 

Реальный однофазный трансформатор и его схема замещения. Приведённые трансформаторы. Схема замещения приведённого однофазного трансформатора. Режимы работы трансформатора. Коэффициент полезного действия (КПД) и потери энергии, коэффициент нагрузки и внешняя характеристика трансформатора. Трёхфазные трансформаторы.

Однофазный трансформатор предназначен для создания переменного напряжения нужной величины для нагрузки, не нуждающейся в трехфазном электропитании. Любой трансформатор состоит из двух основных узлов: сердечника и катушек, их бывает не менее двух. Принцип работы простой. В результате прохождения электрического тока по проводнику в первичной обмотке, на вторичную наводится электродвижущая сила (ЭДС). Сердечник состоит из пластин ферромагнетика, то есть материала, способствующего усилению магнитного поля (электротехническая сталь специальных марок).

Величина ЭДС определяется по формуле: Е = 4,44*Ф*f * ω , где: Ф – амплитуда магнитного потока; f – частота тока; ω – число витков в обмотке. Допустимая мощность нагрузки, которую «потянет» однофазный трансформатор, задается сечением провода, которым намотаны катушки, и добротностью магнитопровода, в частности магнитной проницаемостью ферромагнетика µ.

Одним из средств изучения работы трансформатора является эквивалентная схема замещения, в которой магнитная связь между обмотками трансформатора замещена электрической связью, а параметры вторичной обмотки приведены к числу витков первичной.

Так как в приведенном трансформаторе k=1, то и –E1=E2. В результате точки a1 и a2, b1и b2 имеют одинаковый потенциал, поэтому на схеме их можно соединить, получив тем самым Т-образную схему замещения трансформатора.

Параметры r1, x1 – активное и индуктивное сопротивления первичной обмотки, соответственно.

r2, x2 – приведенные значения активного и индуктивного сопротивлений вторичной обмотки, соответственно. Zн – полное сопротивление нагрузки.

Магнитный поток не зависит от нагрузки, поэтому его представляют как индуктивное сопротивление xm, активное сопротивление rm, которое обусловлено магнитными потерями и протекающий через них ток холостого хода I0. Эти параметры определяются в опыте холостого хода трансформатора.

Изменяя Zн на схеме замещения, можно получить любой режим работы трансформатора. Например, при разомкнутой вторичной обмотке Zн= ∞, что соответствует режиму холостого хода трансформатора, а при Zн= 0 – режиму короткого замыкания. При любых других значениях Zн – режим работы под нагрузкой. Режимы работы необходимы для определения параметров схемы замещения. При практических расчетах, током холостого хода пренебрегают, тогда схема сводится к упрощенной.

Где rэкв=r1+r2’, xэкв=x1+x2

Режимы работы трансформатора.

1. Режим холостого хода. режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике.

2. Нагрузочный режим. режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора.

3. Режим короткого замыкания. режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.

КПД трансформатора:

,

P0— потери холостого хода (кВт) при номинальном напряжении

PL — нагрузочные потери (кВт) при номинальном токе

P2— активная мощность (кВт), подаваемая на нагрузку

n — относительная степень нагружения (при номинальном токе n=1 ).

 

Потери электроэнергии в трансформаторе складываются из:

· потерь на нагревание обмоток трансформатора;

· потерь на нагревание сердечника;

· потери на перемагничивание сердечника.

Чем больше мощность трансформатора, тем выше КПД и ниже уровень потерь.

Зависимость напряжения на вторичной обмотке трансформатора от тока нагрузки U2 = f(I2) при U1 = const и cos φ2 = const называется внешней характеристикой.

Трехфазные трансформаторы.

Для трансформирования энергии в трехфазных системах используют либо группу из трех однофазных трансформаторов, у которых первичные и вторичные обмотки соединяются звездой или треугольником, либо один трехфазный трансформатор с общим магнитопроводом.

Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Соединение обмоток треугольником конструктивно удобнее при больших токах.

 

Назначение, устройство, принцип действия асинхронного двигателя (АД). Двигатели с короткозамкнутым и фазным ротором. Приведенная схема замещения асинхронного двигателя. Механическая и рабочая характеристика двигателя. Схемы пуска двигателя с фазным и короткозамкнутым ротором. Энергетическая диаграмма. Потери мощности и КПД асинхронного двигателя.

Асинхронная машина – это машина, в которой возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т.е. с частотой вращения, отличной от частоты вращения магнитного поля.

 Достоинство асинхронного двигателя – простота его конструкции и низкая стоимость. В машине отстутсвуют какие-либо легко провреждающиеся или быстро изнашивающиеся электрические части.

Недостаток – сложное и неэкономичное регулирование режимов работы.

Статор-Это полый цилиндр собранный из листов электротехнической стали, изолированных друг от друга слоем лака. В пазах на внутренней стороне статора размещаются обмотки трех фаз.

Обмотки фаз соединяются между собой звездой или треугольником и подключаются к трехфазной сети.

Ротор-Это цилиндрический сердечник, собранный из листок электротехнической стали, изолированных друг от друга лаком. Сердечник ротора насажен на вал, закрепленный в подшипниках. В пазах сердечника ротора располагаются витки обмотки ротора. Различают ротор с короткозамкнутой обмоткой и фазный ротор.

 

Принцип действия

При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.

Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.

Режимы работы.

Если частота вращения поля статора n1, а частота вращения ротора n, то работу асинхронной машины можно характеризовать скольжением (относительная разность частот вращения магнитного поля и ротора).

s=(n1 - n)/ n1.

В режиме двигателя (0 < s < 1) преобразует электрическую энергию в механическую. Ротор двигателя вращается в направлении вращения магнитного поля, с частотой меньше, чем частота вращения поля. 

В режиме генератора (s < 0 ). преобразует механическую энергию в электрическую.

В режиме электромагнитного тормоза (s > 1) ротор вращается в направлении, противоположным направлению вращения магнитного поля, создаваемого токами в обмотках статора.

Рис. 13

В каталогах для определения параметров данной точки приводится величина кратности критического момента двигателя:

.

Величина кратности позволяет определить максимально возможный момент двигателя.

4. Точка пуска. В ней М=МП, S=1. Данная точка характеризует пусковые свойства двигателя. В каталогах для определения пусковых свойств приводится величина кратности пускового момента двигателя:

.

       В каталогах приводится также коэффициент кратности пускового тока

который позволяет определить величину тока двигателя в момент пуска.

Рабочие характеристики - зависимости частоты вращения n, вращающего момента Мвр, коэффициента мощности cosφ1 и КПД η двигателя от полезной механической мощности P2 на его валу.

Нелинейность зависимости Мвр (P2) объясняется уменьшением частоты вращения ротора с увеличением мощности P2. Нелинейность зависимости cos φ1(P2) обусловлена тем, что активная составляющая тока двигателя пропорциональна его механической нагрузке, а реактивная индуктивная составляющая от нее практически не зависит. С увеличением нагрузки на валу двигателя коэф-т мощности cos φ1x и скольжения увеличиваются S.

Энергетическая диаграмма.

Процесс преобразования энергии и потери, происходя­щие при работе двигателя, можно иллюстрировать энергетической диаграммой (рис. 1).

Рис.36.1. Энергетическая диаграмма асинхронного двигателя

 

Потребляемая двигателем мощность из се­ти P1частично расходуется на покрытие по­терь в обмотках статора Рм1 и в стали сердечника статора Рс1 на гистерезис и вихревые токи.

Оставшаяся часть мощности Рэм называемая электромагнитной, передается рото­ру через воздушный зазор вращающимся магнитным полем.

Энер­гия, полученная ротором, преобразуется в механическую и частич­но расходуется на покрытие потерь в роторе.

На диаграмме пока­зано, что электромагнитная мощность, поступающая на ротор, мо­жет быть представлена в виде суммы двух мощностей:

Рэм= Р2’+ Pм2.

где Р2’— мощность, развиваемая вращающимся ротором,

Pм2— потери в меди обмоток ротора.

Не вся энергия, преобразованная машиной в Р2’ является полезной энергией Р2, так как часть ее расходу­ется на покрытие механических потерь Рмехот трения в подшип­никах и о воздух вращающихся частей машины.

 

КПД асинхронного двигателя: η= (P2 / P1) * 100% 

Синхронные машины. Режимы работы синхронных электрических машин. Синхронные генераторы и двигатели. Назначение, устройство и принцип работы синхронного генератора. Основные характеристики и схемы пуска синхронного генератора.

 Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля, создаваемого током статора, что является важнейшим эксплуатационным свойством. В основном синхронные машины применяются в качестве генераторов для выработки электрической энергии на электростанция.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии.

Индуктор состоит из полюсов — электромагнитов постоянного тока или постоянных магнитов. Индукторы синхронных машин имеют две различные конструкции:

· Явнополюсную;

· Неявнополюсную.

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты, в маломощных — постоянные магниты.

 Режимы работы синхронной машины:

  1. Режим двигателя. В двигательном режиме к обмотке статора синхронной машины подводят напряжение от трехфазной сети, в обмотке возникает переменный ток I.

К обмотке ротора через два контактных кольца и щетки подводят постоянный ток, который создает магнитный поток ФВ.

  1. Генераторный режим. Если к обмотке ротора подвести постоянный ток и ротор вращать первичным двигателем, то магнитный поток обмотки возбуждения ФВ будет пересекать обмотку статора (якоря) и создавать в каждой ее фазе ЭДС.

Синхронные генераторы и двигатели.

Синхронный генератор – это машина переменного тока, преобразовывающая какой-либо вид энергии в электрическую энергию.

При помощи первичного двигателя ротор-индуктор вращается. Магнитное поле находится на роторе и вращается вместе с ним, поэтому скорость вращения ротора равна скорости вращения магнитного поля. При вращении ротора магнитный поток полюсов пересекает статорную обмотку и наводит в ней ЭДС по закону электромагнитной индукции.

конструкция двигателя практически не отличается от конструкции синхронного генератора.

Электрические машины постоянного тока. Генераторы постоянного тока и электрические двигатели. Области применения машин постоянного тока.  Характеристики электрических машин постоянного тока. Принцип действия генератора постоянного тока (ГПТ), основное уравнение ЭДС и напряжения. Генераторы с самовозбуждением и независимым возбуждением. Схемы включения обмотки возбуждения. Основные характеристики ГПТ.

Электрическая машина постоянного тока состоит из непод­вижной и вращающейся частей. На неподвижной части— укреплены главные полюсы для возбуждения магнит­ного потока и дополнительные — для улучшения коммутации в машине.

Главный полюс состоит из сердечника и обмотки возбуждения. На свободном конце сердечника устанавливается полюсный на­конечник для создания требуемого распределения магнитного потока.

Станина является ярмом ма­шины, т.е. частью, замыкающей магнитную цепь магнитного по­тока главных полюсов

Дополнительные полюсы уста­навливаются на станине между главными полюсами. На сердеч­никах дополнительных полюсов располагаются обмотки, кото­рые соединяются последователь­но с обмоткой якоря.

Якорем называется враща­ющаяся часть машины, состоит из сердечника с обмоткой, уложенной в его пазах, и коллектора, насаженных на общий вал.

Коллектор представляет собой по­лый цилиндр, собранный из изолированных друг от друга и вала машины клинообразных медных пластин

В генераторе индуктором является статор, создающий постоянное магнитное поле между соответствующими полюсами. При вращении ротора, в проводниках обмотки якоря, перемещающихся в магнитном поле, по закону электромагнитной индукции наводится ЭДС. Переменная ЭДС обмотки якоря выпрямляется с помощью коллектора.

Генератор преобразует механическую энергию в электрическую.

Применение. Двигатели постоянного тока широко используются на транспорте (магистральные электровозы, тепловозы, пригородные электропоезда, метрополитен, трамваи, троллейбусы), в станках, прокатных станах, кранах, судовых установках. В подавляющем большинстве автомобилей, тракторов, самолетов и других летательных аппаратов двигатели постоянного тока приводят во вращение все вспомогательное оборудование.

 Характеристики

1. Характеристики холостого хода EЯ.Х(IВ) при разомкнутой цепи якоря, т.е. IН=0 при постоянной номинальной частоте вращения n=nНОМ.

2. При номинальных значениях тока возбуждения IВ= IВ.НОМ и частоты вращения якоря n=nНОМ свойство генератора определяет внешняя характеристика Ея- IЯ R Я = U

3. Чтобы внешняя нагрузка не зависела от тока нагрузки необходимо регулировать ток возбуждения. Регулировочной характеристикой генератора называется зависимость IВ(IЯ) при номинальных значениях частоты вращения n=nНОМ и напряжениями между его выводами U=UНОМ

Принцип действия

В роли индуктора выступает статор, на котором расположена обмотка. На неё подаётся постоянный ток, в результате чего вокруг неё создаётся постоянное магнитное поле. Обмотка ротора состоит из проводников, запитанных через коллектор. В результате на них действуют пары сил Ампера, которые вызывают вращающий момент.

Основное уравнение ЭДС и напряжения. Под действием ЭДС якорной обмотки в цепи возникает ток

где U - напряжение на зажимах генератора;
Rя - сопротивление обмотки якоря.

(2)

Уравнение (2) называется основным уравнением генератора.

Генератор с самовозбуждением

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания.

Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. изображен генератор с параллельным возбуждением.

 

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат Rв. Генератор работает в режиме холостого хода.

Чтобы генератор самовозбудился, необходимо выполнение определенных условий.

1) наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.

2) согласное включение обмотки возбуждения

 

Генератор с независимым возбуждением. Характеристики генератора

Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов.

Схема генератора с независимым возбуждением показана на рис. 6.

Рис. 6                                                                    Рис. 7

Магнитное поле генераторов с независимым возбуждением может создаваться

от постоянных магнитов (рис. 7).

Зависимость ЭДС генератора от тока возбуждения называется характеристикой холостого хода E = Uхх = f (Iв).

Схемы включения обмотки возбуждения. Генераторы с параллельным, последовательным и смешанным возбуждением относятся к машинам с самовозбуждением, так как питание их обмоток возбуждения осуществляется от самого генератора.

Возбуждение генераторов постоянного тока: а - независимое, б - параллельное, в - последовательное, г - смешанное.

Все перечисленные генераторы имеют одинаковое устройство и отличаются лишь выполнением обмоток возбуждения. Обмотки независимого и параллельного возбуждения изготовляют из провода малого сечения, они имеют большое число витков, обмотку последовательного возбуждения — из провода большого сечения, она имеет малое число витков.


Независимое возбуждение

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Схема независимого возбуждения

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.

Схема параллельного возбуждения

Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Схема смешанного возбуждения

Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений.

Требования к пусковой и защитной аппаратуре электродвигателей. Нагрев и охлаждение двигателей. Механические и электромеханические характеристики двигателей.

Требования к пусковой и защитной аппаратуре электродвигателей:

· напряжение и номинальный ток аппаратов должны соответствовать напряжению и расчетному (длительному) току цепи;

· номинальные токи плавких вставок предохранителей и расцепителей автоматических выключателей нужно выбирать, по возможности, близкими к расчетным токам электроприемника или линии;

· аппараты защиты не должны отключать установку при перегрузках, возникающих в условиях нормальной эксплуатации, например при запуске короткозамкнутого электродвигателя;

При выборе пусковой и защитной аппаратуры учитывают условия окружающей среды, номинальный ток аппарата, разрывную мощность его контактов, частоту включений, допустимое значение тока короткого замыкания в защищаемых цепях и другие требования, предъявляемые к работе аппарата.

 

При работе любого электродвигателя часть поступающей к тему энергии затрачивается на потери, связанные с нагревом обмоток и магнитопроводов, трением в подшипниках и вращающихся частей о воздух. Хотя потери энергии в современных электродвигателях невелики, при их работе все же выделяется значительное количество тепла, что приводит к нагреву электродвигателей. Различают постоянные и переменные потери в электрических машинах.

На холостом ходу нагрев машин определяется постоянными потерями. По мере загрузки машины увеличиваются переменные потери и нагрев ее повышается.

Для максимального использования (по тепловым возможностям) всех применяемых в электродвигателе материалов необходимо, чтобы при полной нагрузке его отдельные части нагревались до температур, близких к предельно допустимым. С этой же целью используется искусственное охлаждение электродвигателей, позволяющее большую часть выделяющегося при работе машины тепла отдавать окружающей среде.

Двигатель в процессе охлаждения, стремится к температуре окружающей среды – этот период может быть очень длительным. Для практических целей считают двигатель остывшим полностью, если его температура отличается от температуры окружающей среды не более чем на 3.

 

Механической характеристикой электродвигателя называется зависимость его угловой скорости от вращающего момента ω = f(M).Здесь следует иметь ввиду, что момент М на валу двигателя независимо от направления вращения имеет положительный знак - момент движущий. Вместе с тем момент сопротивления Мс имеет знак отрицательный.

В качестве примеров на рис. приведены механические характеристики: 1 - синхронного двигателя; 2 – двигателя постоянного тока независимого возбуждения; 3 – двигателя постоянного тока последовательного возбуждения.

 

Электромеханической характеристикой двигателя постоянного тока называется зависимость скорости вращения от тока якоря.

Если подать напряжение на обмотку якоря при отсутствии тока на обмотке возбуждения, то магнитный поток будет равен нулю, а скорость будет стремиться к бесконечности. Такое явление называется разносом двигателя. Чтобы избежать разноса двигателя используются электродвигатели с параллельным возбуждением.

Электрические измерения. Измерения в цепях постоянного и синусоидального тока. Измерительные приборы. Расширение пределов измерения амперметров и вольтметров. Современная элементная база электроники. Предмет электроники. Роль электроники в развитии науки и техники и автоматизации производственных процессов. Разделы электроники. Электровакуумные и полупроводниковые приборы.

1)Электрическое измерение – это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах .

2)Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению. Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.

Измерение постоянного тока и напряжения чаще всего производится щитовыми приборами магнитоэлектрической, а при измерении высоких напряжений - электростатической и ионной систем. Иногда применяют приборы электромагнитной, электродинамической и ферродинамической систем, они значительно уступают приборам магнитоэлектрической. Для проведения точных измерений все большее применение находят цифровые вольтметры, амперметры и комбинированные приборы.

Простейшим способом измерения постоянного тока и напряжения является непосредственное включение приборов в цепь, возможное при выполнении условий:

1) максимальный предел измерения амперметра (вольтметра) не меньше максимального тока (напряжения) в цепи;

2) номинальное напряжение амперметра не менее номинального напряжения сети;

3) сопротивление амперметра Rа намного меньше, а сопротивление вольтметра намного больше сопротивления измеряемой цепи Rн, значительное сопротивление амперметра снижает ток в цепи при его включении на величину

4) соблюдение полярности включения приборов.

Для расширения пределов измерения приборов используют преобразователи в виде измерительных шунтов, добавочных сопротивлений, делителей напряжения, измерительных трансформаторов и измерительных усилителей. Шунт представляет собой сопротивление, включаемое параллельно измерительному прибору в цепь измеряемого тока. Шунты на токи до 50-100 А обычно устанавливают внутри прибора. Для больших токов применяют наружные шунты, имеющие токовые зажимы для включения в цепь измеряемого тока и потенциальные зажимы для подключения измерительного прибора.

Подключив к шунту милливольтметр с пределом измерения, соответствующим номинальному падению напряжения на шунте, получим соответствие полной шкалы прибора номинальному току шунта. Измеренный ток

где Iн, Uн - номинальные ток шунта и падение напряжения на шунте; U -показание милливольтметра.

Для расширения пределов измерения вольтметров последовательно с измерительным прибором включают добавочное сопротивление Rд.

Измеренное напряжение

где Р = Rд /Rв+1 - коэффициент расширения предела измерения прибора; Uв - показание вольтметра;

Rв - входное сопротивление вольтметра.

Добавочные сопротивления могут быть как внутренние (помещенные в корпус прибора), так и наружные для измерения напряжений свыше 500 В.

Для расширения пределов измерения приборов с высоким входным сопротивлением используют делители напряжения с фиксированным коэффициентом деления, обычно кратным 10. В установках высокого напряжения электропередач постоянного тока и в сильноточных цепях могут быть использованы кроме указанных преобразователей измерительные трансформаторы постоянного тока.

Переменным (синусоидальным) называется ток, который изменяется в течение времени по величине или направлению. Синусоидальная форма тока и напряжения позволяет производить точный расчет электрических цепей с использованием метода комплексных чисел и приближенный расчет на основе метода векторных диаграмм. При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

Измерение переменного тока и напряжения может производиться непосредственно измерительными приборами любого принципа действия, за исключением магнитоэлектрического. Магнитоэлектрические приборы могут быть использованы после преобразования переменного тока в постоянный.

Для расширения пределов измерения переменного напряжения вместо активных добавочных сопротивлений иногда применяют емкостные.

Измеряемое напряжение U создает в конденсаторе ток I = jwCU, который может быть измерен амперметром электромагнитной системы. Однако при наличии высших гармоник нарушается прямая пропорциональность между током и напряжением, поэтому вместо добавочного конденсатора предпочитают емкостный делитель, а измерение производят электростатическим, ламповым или цифровым вольтметром.

При непосредственном включении измерительного прибора должны соблюдаться те же требования, что и при измерении постоянного тока и напряжения.

Для измерения больших переменных токов и напряжений часто используют измерительные трансформаторы тока и напряжения. Трансформаторы напряжения подключают параллельно измеряемой цепи, и работают они в режиме, близком к холостому ходу, трансформаторы тока включают последовательно в измерительную цепь, и работают они в режиме, близком к короткому замыканию.

При измерении с помощью трансформаторов тока и напряжения должны быть выполнены следующие требования:

1) номинальное напряжение первичной обмотки трансформатора тока (напряжения) должно быть не менее напряжения в измеряемой цепи;

2) номинальный ток Iа (напряжение Uн) измерительного прибора должен быть не меньше номинального тока I2н (напряжение U2н) вторичной обмотки трансформатора; обычно они совпадают.

Пересчетный коэффициент прибора:

где I1н (U1н) - номинальный ток (напряжение) первичной обмотки трансформатора тока (напряжения); k - коэффициент схемы; N - максимальное показание по шкале прибора. Для случаев Iа = I2н или Uв = U2н

Значения коэффициента схемы для различных схем присоединения измерительных приборов к трансформаторам напряжения приведены на рисунке.

3) номинальная нагрузка трансформатора в принятом классе точности должна быть не менее нагрузки, подключаемой к трансформатору. Номинальное сопротивление нагрузки, для трансформатора тока наибольшее, а для трансформатора напряжения - наименьшее, указываются в паспорте на трансформатор и определяют то сопротивление, которое можно включить во вторичную обмотку трансформатора без увеличения погрешности выше допустимой.

4) при работе с фазочувствительными приборами необходимо следить за порядком включения обмоток трансформатора Изменение порядка влечет за собой поворот соответствующего вектора на 180°.

3)Современная элементная база электроники. Одним из эффективных направлений энергосберегающих технологий является широкое применение устройств силовой электроники. Силовая электроника — область техники, связанная с управлением потоками электроэнергии посредством мощных электронных приборов, которые, как правило, работают в ключевых режимах, пропуская или блокируя поток электроэнергии, что позволяет изменением алгоритмов их переключения управлять усредненными значениями мгновенной мощности по требуемым законам. Основными элементами силовой электроники служат полупроводниковые приборы, обладающие характеристикой ключевого элемента, которые коммутируют (включают и отключают) участки электрической цепи.
Современный силовой полупроводниковый ключ — сложная схема, содержащая множество параллельных структур.
Действие ключевого элемента основано на том, что во включенном состоянии он обладает очень малым сопротивлением, а в выключенном — весьма большим.

4) Предмет электроники. Роль электроники в развитии науки и техники и автоматизации производственных процессов. Разделы электроники. Электроника, наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств, в которых это взаимодействие используется для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации. В Э. исследуются взаимодействия электронов как с макрополями в рабочем пространстве электронного прибора, так и с микрополями внутри атома, молекулы или кристаллической решётки. Э. опирается на многие разделы физики , используя результаты этих и ряда других областей знаний, Э. ставит перед другими науками новые задачи, чем стимулирует их дальнейшее развитие. Практические задачи Э.: разработка электронных приборов и устройств, выполняющих различные функции в системах преобразования и передачи информации, в системах управления, в вычислительной технике, а также в энергетических устройствах; разработка научных основ технологии производства электронных приборов и технологии, использующей электронные и ионные процессы и приборы для различных областей науки и техники. На основе достижений Э. развивается промышленность, выпускающая электронную аппаратуру для различных видов связи, автоматики, телевидения, радиолокации, вычислительной техники, систем управления технологическими процессами, приборостроения, а также аппаратуру светотехники, инфракрасной техники, рентгенотехники и др.

Электроника включает в себя три области исследований:

1. вакуумную электронику(раздел электроники, включающий разработку и изготовление источников свободных электронов, систем управления потоками электронов и их взаимодействием с электрическими и магнитными полями в вакууме, а также создание вакуумных электронных приборов и устройств различного назначения);

2. твердотельную электронику(раздел электроники, изучающий физические принципы работы, функциональные возможности электронных приборов, в которых движение электронов или иных носителей заряда, обуславливающих электрический ток, происходит в объёме твёрдого тела.);

3. квантовую электронику(область физики, изучающая методы усиления и генерации электромагнитного излучения, основанные на использовании явления вынужденного излучения в неравновесных квантовых системах, а также свойства получаемых таким образом усилителей и генераторов и их применения в электронных приборах.).

 

5) Электровакуумные и полупроводниковые приборы . Электровакуумный прибор — устройство, предназначенное для генерации, усиления и преобразования электромагнитной энергии, в котором рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы непроницаемой оболочкой. К таким приборам относят вакуумные электронные приборы, в которых поток электронов проходит в вакууме, газоразрядные электроприборы, в которых поток электронов проходит в газе. Так же к электровакуумным приборам относятся и лампы накаливания. Полупроводниковые приборы — широкий класс электронных приборов, изготавливаемых из полупроводников. К полупроводниковым приборам относятся: интегральные схемы (микросхемы), полупроводниковые диоды (стабилитроны, диоды , тиристоры, транзисторы, приборы с зарядовой связью.



Силовые преобразователи. Выпрямители, инверторы преобразователи частоты. Основные элементы силовых преобразователей. Полупроводниковые диоды, стабилитроны и тиристоры. Назначение, вольтамперные характеристики и области их применения.

 

Силовой преобразователь - элемент, при помощи которого оказывается регулирующее воздействие на электропривод. По своему характеру такое воздействие ( fi) зависит от рода тока, способа управления движением электропривода и от конкретных особенностей преобразователя.

Выпрямитель преобразователя частоты строится либо на диодах, либо на тиристорах, либо на их комбинации. Выпрямитель, построенный на диодах, является неуправляемым, а на тиристорах - управляемым. Если используются и диоды, и тиристоры, выпрямитель является полууправляемым.

Инверторы служат для преобразования энергии постоянного тока в энергию переменного тока требуемой частоты.

В качестве переключающих приборов в сильноточных инверторах применяют тиристоры. В цепях с относительно небольшими значениями протекающих токов могут использоваться мощные полевые или биполярные транзисторы.

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

35.Источники вторичного электропитания электронных устройств. Структурная схема (блок-схема) источника. Назначение и функциональные характеристики структурных элементов (блоков).

Вторичный источник электропитания — это устройство, предназначенное для обеспечения питания электроприбора электрической энергией, при соответствии требованиям её параметров: напряжения, тока, и т. д. путём преобразования энергии других источников питания. Источник электропитания может быть интегрированным в общую схему, выполненным в виде модуля, или даже расположенным в отдельном помещении. Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное. В большинстве случаев выпрямитель состоит из одного диода или четырёх диодов, образующих диодный мост. Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания. Обычно он представляет собой просто конденсатор большой ёмкости. Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ, стабилизаторы напряжения и тока.

 

 

Схемы полупроводниковых силовых выпрямителей - однополупериодная, двухполупериодная с нулевой точкой, двухполупериодная мостовая схемы. Основные характеристики схем выпрямления. Сглаживание пульсаций. Трёхфазная мостовая схема выпрямления и её преимущества.

Мостовая схема выпрямителя.

Основная особенность данной схемы – использование одной обмотки трансформатора при выпрямлении обоих полупериодов переменного напряжения.

При выпрямлении положительного полупериода переменного напряжения ток проходит по следующей цепи: Верхний вывод вторичной обмотки – вентиль V2 – верхний вывод нагрузки – нагрузка - нижний вывод нагрузки - вентиль V3 – нижний вывод вторичной обмотки – обмотка.

При выпрямлении отрицательного полупериода переменного напряжения ток проходит по следующей цепи: Нижний вывод вторичной обмотки – вентиль V4 – верхний вывод нагрузки - нагрузка – нижний вывод нагрузки – вентиль V1 – верхний вывод вторичной обмотки – обмотка.

Сглаживание пульсаций - первоочередная задача после выпрямления тока. Эту задачу выполняет фильтр, состоящий из конденсатора (конденсаторов), который включен в цепь между выпрямителем и нагрузкой.

Принцип работы сглаживающего фильтра выпрямителей следующий, в промежутки времени между импульсами напряжения с выпрямителя напряжение для нагрузки получается с конденсатора.

Трехфазная мостовая схема выпрямления) состоит из трансформатора Т, плести диодов и нагрузки Rd. Сетевая и вентильная обмотки трансформатора могут быть соединены как в треугольник, так и в звезду.

Трехфазная мостовая схема выпрямления наиболее распространена в выпрямителях с падающей и жесткой характеристиками.

Трехфазные мостовые схемы выпрямления характеризуются наилучшими показателями по сравнению с другими схемами преобразования переменного напряжения в постоянное, являются наиболее распространенными в области средних и больших мощностей.

Преимущества: обратное напряжение на вентиле в 2 раза мень­ше; лучшее использование трансформатора; отсутствие подмагничивания магнитопровода; меньшая амплитуда и большая час­тота пульсации, возможность работы непосредственно от сети без трансформатора.

 

Биполярные и униполярные (полевые) транзисторы и их особенности. Структурная схема и условные обозначения рпр и прп - транзисторов и их основные характеристики. Способы включения транзисторов - схемы ОБ, ОЭ и ОК и их особенности. Транзисторные усилители на биполярных транзисторах. Схема усилительного каскада с ОЭ. Основные характеристики транзисторных усилителей. Однокаскадные и многокаскадные усилители напряжения.

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n — электронный тип примесной проводимости, p — дырочный).

Работа биполярного транзистора, в отличие от полевого транзистора, основана на переносе зарядов одновременно двух типов, носителями которых являются электроны и дырки. Электрод, подключённый к среднему слою называют базой, электроды, подключённые ко внешним слоям, называют коллектором и эмиттером.

Униполярный (полевой) транзистор — полупроводниковый прибор, через который протекает поток основных носителей зарядов, регулируемый поперечным электрическим полем, которое создаётся напряжением, приложенным между затвором и стоком или между затвором и истоком. Принцип действия полевых транзисторов основан на перемещении основных носителей заряда одного типа (электронами или дырками)

Существует несколько способов включения транзистора: схема с общей базой, схема с общим эмиттером, схема с общим коллектором. В каждой из этих схем один из выводов транзистора служит общей точкой, а два других являются входом и выходом.

Усилители в схеме включения транзистора

с общей базой : усиление по напряжению, отсутствие усиления по току, малое входное сопротивление и большое выходное сопротивление.

с общим коллектором:  усиление по току, отсутствие усиления по напряжению, большое входное сопротивление и малое выходное сопротивление.

с общим эмиттером : усиление по напряжению, по току, по мощности, средние значения входного и выходного сопротивления.

схема усилительного каскада с ОЭ

Основы цифровой электроники. Логические операции дизъюнкции, конъюнкции и инверсии. Логические элементы, реализующие эти операции, их условные обозначения и соответствующие таблицы истинности. Операционные усилители и области их применения. Микропроцессорные устройства и их применение.

Электроника охватывает обширный раздел науки и техники, связанный с изучением и использованием различных физических явлений, а также разработкой и применением устройств, основанных на протекании электрического тока в вакууме, газе и твердом теле при воздействии электрических или магнитных полей.

В цифровых электронных устройствах происходит кодирование сигнала, т.е. преобразование его в определенную последовательность.

Аналоговые электронные устройства предназначены для приема, преобразования и передачи сигналов, которые изменяются по закону непрерывной (аналоговой) функции. однотипных импульсов.

Дискретные электронные устройства предназначены для приема, преобразования и передачи электрических сигналов, представленных в дискретной форме.

 

 

Операционные усилители — это усилители постоянного тока, предназначенные для осуществления как линейных, так и нелинейных преобразований сигналов, причем вид преобразования (операция) определяется лишь структурой внешней по отношению к усилителю сменной цепи обратной связи.

Для того, чтобы расширить область применения ОУ, выпускаются различные их типы, в каждом из которых один или несколько параметров являются выдающимися, а остальные на обычном уровне

По области применения:

· Индустриальный стандарт.

· Прецизионные

· С малым входным током (электрометрические)

· Микромощные и программируемые

· Мощные (сильноточные)

· Высоковольтные

· Быстродействующие

Микропроцессором (МП) называют построенное на одной или нескольких БИС/СБИС программно-управляемое устройство, осуществляющее процесс об­работки информации и управление им.

Микропроцессорные устройства (МПУ) используются практически во всех областях деятельности человека, имеют самые разнообразные назначения и выполняют различные функции.

 

По назначения и применению:

МПУ или микропроцессорные системы (МПС) управления группой

оборудования;

-МПУ или МПС обработки информации. Основным целевым объектом таких систем является человек, который называется пользователем МПУ или МПС;

-МПУ или МПС автоматизированного управления каким-либо процессом, например технологическим процессом, испытаниями, измерением, экспериментом, проектированием и т. п.

 

 

Электрические цепи постоянного тока. Элементы э/цепи. Источники и потребители э/энергии. Граф изобр-е э/цепи. Идеальные элементы цепи и схемы их замещения. Линейные и нелинейные элементы.

Электрической цепью называют совок-ть устр-в, предназнач-х для получения, передачи, преобразования и использования э/энергии. Это совок-ть элементов, ч/з которые замыкается электрический ток. Э/цепь состоит из отдельных устр-в – элементов э/цепи.

Источниками э/э являются электрические генераторы, в кот. механическая энергия преобразуется в электрическую, а также первичные элементы и аккумуляторы, в кот. происходит преобразование химической, тепловой, световой и др. видов э-гии в электрическую.

К потребителям э/э относятся электродвигатели, различные нагревательные элементы, световые приборы и др.

Электрическая схема  - это графическое изображение эл. цепи, включающее в себя условные изобр-я устройств и показывающее соединение этих устр-в. На рис. изображены э/схема и схем замещения.

Схема замещения – это граф. изобр-е цепи с помощью идеалных элементов, параметрами кот. явл-ся параметры замещаемых элементов.

Идеальные элементы – это элементы, которые при всех условиях обладают только одним параметром: только сопротивлением, только индуктивностью, только ёмкостью.

 Резистор, кат. индуктивности, конденсатор.

Сопротивление проводника определяется по формуле где ро – удельное сопротивление проводника, l – длина проводника, S – площадь сечения.

Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Индуктивностью обладают катушки индуктивности.  Индуктивность катушки, измеряемая в Генри [Гн], может определяться по формуле , где W – число витков катушки, Ф – магнитный поток, возбуждаемый током i.

Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Полагают, что емкостью обладают только конденсаторы. Емкость конденсатора, измеряемая в фарадах (Ф), может определяться по формуле:  , где q – заряд на обкладках конденсатора, а Uc – напряжение на конденсаторе.

Сопротивления, вольтамперной характеристикой (ВАХ) которых являются прямые линии, н-ют линейными, а э/цепи только с линейными сопротивлениями – линейными э/цепями. Сопротивления, ВАХ которых не являются прямыми линиями, называют нелинейными, а э/цепи только с нелинейными сопротивлениями – нелинейными э/цепями.

Пунктиром обозначена ВАХ нелинейного сопротивления.

Идеальные источники ЭДС и тока и их характеристики. Уравнения состояния электрической цепи с реальными источниками ЭДС и тока. Внешняя ВАХ источника питания и режимы его работы. Согласованный режим работы источника.

Источники э/энергии делятся на источники постоянного тока (гальванические элементы, аккумуляторы постоянного тока, генераторы) и переменного тока. Электрические свойства источника э/э (генератора) характеризуются его внутренним сопротивлением R в  - сопротивлением электрическому току всех элементов источника (генератора). Генератор с Rв=0 называется источником напряжения. Если Rв>>0, то ток практически не зависит от сопротивления самой цепи.

Условные обозначения: гальван. элемент (батарейка), термоэлемент, фотоэлемент, генераторы (пост. тока и перем. тока)

Дата: 2019-07-24, просмотров: 298.