Расчёт стрелы телескопической
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Введение

 

1.1 Область применения (использования).

 

Автомобильный кран 16т на шасси КамАЗ-53213, гидравлический, предназначен для выполнения погрузочно-разгрузочных и строительно-монтажных работ с обычными и разрядными грузами на рассредоточенных объектах.

 

1.2 Цель и назначение разработки

 

Кран автомобильный, грузоподъёмностью 16тонн, создаётся в связи с заменой снимаемого с производства крана.

 

1.3 Технические требования

 

1.3.1 Состав крана и требования к его конструктивному устройству

Проектируемый кран гидравлический, полноповоротный, с жёсткой подвеской телескопической стрелы, состоит из следующих составных частей:

· неповоротная часть: коробка отбора мощности, рама, опоры выносные, стойка стрелы, механизм блокировки подвески, шасси автомобиля, гидрооборудование неповоротной части, пневмооборудование, облицовка.

· поворотная часть: лебёдка грузовая с прижимным роликом, механизм поворота, рама поворотная, опорно-поворотное устройство, кабина, кожух, отопитель, гидрооборудование поворотной части.

· кран оборудован ограничителем нагрузки крана ОНК - 140 – 05.

· стреловое оборудование: канат D = 16,5мм, крюковая подвеска с крюком грузоподъёмностью 16тонн, стрела, гидроцилиндр подъёма стрелы.

· приводы управления: привод управления рабочими операциями, привод управления двигателем.

· электрооборудование: одиночный ЗИП.

 

1.3.2. Требуемые технические данные

· грузоподъёмность, тонн, максимальная:

на выносных опорах 16

без выносных опор 3

при передвижении с грузом на крюке 3

· высота подъёма крюка, м, максимальная 21,7

· вылет, м, максимальный 18,5

· грузоподъёмность при выдвижении телескопической стрелы, максимальная, тонн 4

· максимальная глубина опускания крюка для стрелы 9,7м с грузом 8т на вылете 5м, м. 12

· длина стрелы, м 9,7…21,7

· скорость подъёма-опускания номинального груза, м/сек.

· максимальная скорость подъёма-опускания крюка без груза, м/сек

· скорость изменения вылета крюка, м/сек:

при подъеме (опускании) стрелы 0,15

при выдвижении (втягивании) стрелы 0,13

· частота вращения поворотной части, об/мин. 1,75

· скорость передвижения крана, км/час:

транспортная 50

рабочая с грузом на крюке 5

· размеры опорного контура, м:

длина 3,85

· ширина: передних опор 4,8

задних опор 4,8

· угол поворота, град:

без груза на крюке со стрелой 9,7м.360

с грузом на крюке при работе на опорах 240

с грузом на крюке при работе без опор 240

· полная масса крана, кг. 21500

 

1.3.3. Требования к надёжности

Средний ресурс до первого капитального ремонта должен быть не менее 5000 часов. Наработка на отказ должна быть не менее 100 часов. Смазочные устройства должны обеспечивать работоспособность механизмов крана без смены смазки в период между техническими обслуживаниями.

Мероприятия по техническому обслуживанию должны включать:

- контрольные осмотры;

- ежедневные обслуживания;

- номерные технические обслуживания;

- сезонное обслуживание;

 

1.3.4. Требования к уровню унификации и стандартизации.

Основные механизмы и узлы крана максимально унифицированы с механизмами и узлами автокранов серийно выпускаемых.

Коэффициент применяемости должен быть не ниже 70%.

Коэффициент повторяемости должен быть не ниже 1,3.

 

1.3.5. Требования эстетические.

Кран по внешнему виду и отделке должен отвечать современным требованиям технической эстетики. Эстетический показатель должен быть не ниже 9 баллов.

1.3.6. Требования к исходным материалам составных частей крана.

В конструкции проектируемого крана используются материалы, применяемые для изготовления кранов КС – 3572 , КС – 3571 , КС – 3576 , а также другие материалы. Блоки грузового полиспаста крана изготавливаются из чугуна марки СЧ 18 – 36 ГОСТ 1412 – 70 «Отливки из серого чугуна».

1.3.7. Условия эксплуатации.

Проектируемый кран предназначен для эксплуатации в условиях, установленных ГОСТ 22827 – 77 «Краны стреловые самоходные общего назначения. Технические условия», с учётом требований, установленных данным техническим заданием.

 

1.3.8. Дополнительные требования.

· Кран должен быть работоспособным:

при эксплуатации в любое время года и суток при температуре окружающего воздуха от +40 до -40 .

при уклоне местности – 3 .

при наклоне крана (наклон конструкции, к которой прикреплена стрела) относительно горизонта:

на выносных опорах – 1,5 .

без выносных опор – 6 .

с соответствующим уменьшением грузовых характеристик на 80%.

· Время развёртывания крана (при работающем двигателе), из транспортного положения в рабочее или из рабочего в транспортное, расчётом из двух человек, не более 5 минут.

· Конструкция крана должна обеспечивать:

предотвращение повреждения блоков;

возможность работы перед кабиной;

механизированную блокировку рессор тележки шасси;

запас прочности грузового каната не менее 6.

· Кран должен иметь защитную окраску хлорвиниловой эмалью ХВ 518 по грунту №138 или ГФ – 020.

· Гидравлический привод должен обеспечивать плавное, бесступенчатое регулирование скоростей рабочих механизмов крана.

· Выдвижение секций стрелы должно производиться с помощью гидроцилиндров. Грузоподъёмность при выдвижении секций стрелы должна быть в пределах грузовой характеристики.


2. Механизация

Автомобильный кран предназначен для выполнения погрузочно-разгрузочных и строительно-монтажных работ с обычными и разрядными грузами на рассредоточенных объектах. Максимальная грузоподъемность крана 16 т. В связи с этим, целесообразно применение крана при работе с грузами весом свыше 10 т. Например, при строительстве цехов заводов, при строительстве мостов, при работе с крупн габаритными грузами.

При работе крана, обслуживающему персоналу необходимо учитывать опасные зоны (зоны возможного падения и отскока груза).

Также перед работой необходимо правильно установить кран на строительной площадке.

Правильная установка крана на строительной площадке имеет важное значение для безопасного производства работ. Строительную площадку перед установкой крана необходимо очистить от мусора и строительных отходов, поверхность спланировать, выровнять ямы, канавы и выбоины засыпать землей и утрамбовать. В зимнее время площадку необходимо очистить от снега до грунта и посыпать песком или щебнем.

Стреловые самоходные краны следует устанавливать на строительной площадке после проверки несущей способности грунтового основания, которая должна соответствовать максимальному опорному давлению крана при наибольшей нагрузке. Другим важным критерием допустимости установки крана на строительной площадке служит угол осадки крана. Значительная деформация грунта не так опасна, если она происходит равномерно. Основное влияние на устойчивость кранов оказывает угол наклона крана из-за неравномерной осадки грунта в связи с различными значениями давления опор крана на грунт. Работа крана на свеженасыпанном грунте запрещается. Такая работа может быть разрешена только при использовании инвентарных подстилающих устройств (шпал, плит, щитов). Надежнее для этих целей применять инвентарные подкрановые щиты из металлического проката различных профилей (труб, швеллеров).

Автомобильные, пневмоколесные и гусеничные краны разрешается устанавливать на краю траншеи или котлована при условии соблюдения расстояний, приведенных в таблице 2.1. При невозможности соблюдения этих расстояний откос должен быть укреплен.

Установка на строительной площадке стреловых самоходных кранов производится так, чтобы при работе расстояние между поворотной частью крана (при любом его положении) и строениями, штабелями грузов, колоннами было не менее 1 м. Кран нужно устанавливать на все имеющиеся дополнительные опоры.


Табл. 2.1. Допустимые расстояния от основания котлована (траншеи) до опоры крана

Глубина

котлована

Нк, м

Расстояние от основания откоса до ближайшей опоры

крана при ненасыпном грунте, м

песчаном и гравийном супесчаном суглинистом глинистом лессовом сухом
1 1,5 1,25 1 1 1
2 3 2,4 2 1,5 2
3 4 3,6 3,25 1,75 2,5
4 5 4,4 4 3 3
5 6 5,3 4,74 3,5 3,5

Под опоры следует подкладывать прочные и устойчивые подкладки. Кран нужно установит так, чтобы можно было с одного места выполнить максимум операций по подъемы и перемещению грузов. При этом безопаснее выполнять работу с минимальными вылетами крюка и углами поворота платформы. Установка кранов должна производиться в соответствие с проектом производства работ и инструкцией по эксплуатации крана, разработанной заводом-изготовителем. Установка грузоподъемных кранов на строительной площадке, размещение участков работ, рабочих мест, проездов транспортных средств и проходов для людей должны выполняться с учетом выделения опасных для пребывания людей зон, в пределах которых производиться подъем и перемещение грузов кранами.

Зоны постоянно действующих опасных производственных факторов во избежание доступа посторонних лиц должны быть ограждены защитными ограждениями, удовлетворяющими требованиям ГОСТ 23407-78.

Граница опасной зоны грузоподъемного крана определяется с учетом отлета (падения) груза, перемещаемого краном на наибольшем вылете стрелы.

Границы опасных зон стреловых самоходных кранов определяются исходя из следующих условий:

· установка крана для монтажа устойчивых элементов;

· установка крана для монтажа высоких неустойчивых элементов;

· установка крана вблизи штабеля складирования (здания и т.д.);

· установка крана вблизи котлована (траншеи);

· установка крана вблизи линии электропередач.

Границу опасной зоны при работе крана по монтажу устойчивых элементов можно определить по формуле:

 

, (2.1)

 

где  - радиус опасной зоны;

 - максимальный вылет крюка крана;

 - длина детали;

 - расстояние от вылета крюка до места возможного падения груза.

Расстояние  должно быть не менее, м:


Табл.2.2

Высота подъема груза Н, м Расстояние , м не менее
до 20 7
от 20 до 70 10

 

 

Рис. 2.1. Границы опасной зоны при работе крана по монтажу устойчивых элементов.

 

Например, определим границу опасной зоны, когда автомобильным краном КС – 4572 будет производиться монтаж плит.

Известно:

Наибольший вылет 18,4 м, длина плиты 5 м, наибольшая высота подъема 21,7 м.

Согласно табл. 2  м. Подставим данные значения в формулу, получим:

Границу опасной зоны при монтаже краном неустойчивых элементов можно определить по формуле:


, (2.2)

 

где  - радиус опасной зоны (вылет крюка);

 - рабочий радиус крана;

 - высота подъема груза;

Например, определим границу опасной зоны, при монтаже колонны автомобильным краном КС – 4572.

Известно:

Вылет 10 м, высота подъема груза 10 м.

 

Согласно табл. 2  м. Подставим данные значения в формулу, получим:

 

Рис. 2.2. Границы опасной зоны при работе крана по монтажу неустойчивых элементов.


Граница опасной зоны между штабелем конструкций (стеной здания, колонной) и поворотной частью крана может быть подсчитана по формуле:

, (2.3)

 

где  - габарит поворотной части крана;

 - радиус опасной зоны вращения крана;

 - расстояние между штабелем и краном не менее 1 м.

Например, определим границу опасной зоны между штабелем конструкций (стеной здания, колонной) и поворотной частью крана КС – 4572.

Известно:

Габарит поворотной части крана 2,95 м, расстояние между штабелем и краном принимаем 3 м.

Подставим данные значения в формулу, получим:

 

 

 

Рис. 2.3. Границы опасной зоны между штабелем конструкций и поворотной частью крана.

 

Производство всех работ и пребывание людей в опасной зоне вращения крана строго запрещается.


3. Конструкторская часть

Расчёт грузовой лебёдки. Расчет будем вести по методическим указаниям [3]

Задача расчёта.

Спроектировать механизм подъёма груза автомобильного крана.

Исходные данные.

грузоподъёмность mг = 16000 кг;

высота подъёма H = 21,7 м.

скорость подъёма V = 0,14 м/с.

кратность полиспаста а = 4.

масса крюковой подвески mкр = 150 кг.

 

3.1 Выбор каната и барабана.

 

3.1.1 Находим грузоподъёмную силу по формуле

 

 (3.1)

 

где g = 9,81 м/с - ускорение свободного падения.

Получим .

 

3.1.2 Определяем КПД полиспаста по следующей формуле:

 

 = , (3.2)

 

где  = 0,98 – КПД блока на подшипниках качения;

к = 1 – число обводных блоков.

Получим

 =  = 0,95

 

3.1.3 Рассчитываем наибольшее натяжение ветви каната, набегающей на барабан при подъёме груза по формуле:

 

 , (3.3)

 

где  = 1 – число полиспастов.

Получим

 

F  =

 

3.1.4 Разрывное усилие каната в целом определяется по формуле:

 

, (3.4)

 

где  - минимальный коэффициент использования каната;

 - символ, означающий смещение по таблице [3 стр.25] соответствия групп классификации и коэффициентов использования каната и выбора диаметра. (Допускается изменение коэффициента выбора диаметра барабана , но не более чем на два шага по группе классификации в большую или меньшую сторону, с соответствующей компенсацией, путём изменения величины  на то же число шагов в меньшую или большую сторону), поэтому введём ряд смещений:

Тогда получим ряд значений:

Имеем

Разрывное усилие каната ( ), для кратности , для основного и добавочных значений получим по формуле (4):

 

 

3.1.5 Выбираем тип каната. Для автомобильного крана, работающего на открытом воздухе, при наличии пыли и влаги следует выбирать канат типа

ЛК – Р 6 19+1 о.с., ГОСТ 2688-80 с малым количеством проволок большого диаметра. Этот канат обладает высокой абразивной и коррозионной износостойкостью.

По найденным значениям  находим значения диаметров каната  и маркировочную группу, соответствующую условию прочности каната:

 

, (3.5)

 

где  - разрывное усилие каната в целом (по каталогу). Имеем следующие значения диаметров каната (в скобках указаны маркировочные группы (МПА) и разрывные усилия ( )):

 

 


3.1.6 Минимальный диаметр барабана определяется по формуле

 

, (3.6)

 

где  - коэффициент выбора диаметра барабана.

По таблице [3 стр.25], для заданной группы классификации механизмов, получают основное значение . При смещении по этой таблице вверх и вниз на два шага, находят значения , где

При определении минимального диаметра барабана получим основное

значение . При смещении по этой таблице вверх и вниз на два шага, имеем:

По формуле (3.6) получим:

 

 

3.1.7 Расчётный диаметр барабана , принимают из ряда Ra20.

Имеем

ГОСТ 3241 – 80 «Канаты стальные. Технические условия» приводит ограничение: «Диаметр шейки барабана должен быть не менее 15 номинальных диаметров каната». Следовательно, отбрасываем барабаны с .

3.1.8 Длина барабана с односторонней нарезкой определяется по формуле:

 

 (3.7)


где  - шаг нарезки; - кратность полиспаста; - необходимая

длина каната на барабане ( =50м.) (условно).

 

Получим

 

Как видно из расчётов, вариант с канатом диаметром 16,5мм даёт больший диаметр барабана при меньшей его длине.

Ради запаса примем:

диаметр барабана D = 450мм.

длина барабана L = 605 мм.

диаметр каната d = 16.5 мм.

На автомобильных кранах допустима навивка каната на барабан в несколько слоёв, следовательно, запаса каната на выбранном барабане будет достаточно.

 

3.1.9 Определим угловую скорость барабана по формуле:

 

 , (3.8)

 

Получим


3.2 Выбор гидромотора [4].

 

3.2.1 Находим статическую мощность гидромотора по формуле:

 

 , (3.9)

 

где  =  

 = 0,9 – КПД механизма с цилиндрическим редуктором.

 = 0,965 – КПД гидромотора.

 

Получим  Вт. (  кВт).

 

3.2.2 Крутящий момент создаваемый гидромотором:

 

 , (3.10)

 

где  - угловая скорость гидромотора.

 

 ,

 

 =31,5 передаточное число редуктора (взято максимальное среди двухступенчатых редукторов).

 

Получим .

 

3.2.3 Потребный рабочий объём гидромотора:


 , (3.11)

 

где = 16 МПА – перепад давлений на гидромоторе (выбираем ориентировочно [4 стр.22]).

=0,94 – механический КПД гидромотора в первом приближении.

Получим

 

 

По [4 стр.22] выбираем аксиально-поршневой регулируемый гидромотор 223.25.

Техническая характеристика гидромотора:

потребный рабочий объём гидромотора =214

перепад давлений на гидромоторе 16 МПА.

номинальная подача 4,840

частота вращения вала гидромотора 1400

(Регулировать на частоту 750 )

 

3.3 Выбор редуктора

 

Выбираем редуктор, оснащённый зубчатым венцом на выходном валу,

выберем универсальный двухступенчатый редуктор Ц2У – 250.


3.4 Выбор тормоза

 

3.4.1 Грузовой момент на барабане определяется по формуле:

 

 , (3.12)

где  =

Получим

 

 

3.4.2.Статический момент на входном валу редуктора при торможении определяют по формуле:

 

 , (3.13)

 

где - КПД механизма, который можно принять равным КПД редуктора.

Получим

 

 

3.4.3 Тормозной момент, на который регулируют тормоз, определяют по формуле:

 

 , (3.14)

 

где 2 – коэффициент запаса торможения.

Получим

 

=

 

Выбираем ленточный тормоз (при одинаковом тормозном моменте, по сравнению с колодочным и дисковым тормозами, он имеет меньшие размеры, что важно на автомобильных кранах).

При тормозном шкиве диаметром 180 мм, тормозной момент 800 Н м.

 

3.5 Расчёт шпоночного соединения

 

Для проверки работоспособности спроектированной конструкции следует проверить надёжность шпоночного соединения тихоходный вал редуктора - зубчатый венец. Расчёт будет вестись по методике предложенной [6].

Выбранная шпонка: «Шпонка 22  14 90 ГОСТ 23360 – 78» (Шпонка призматическая).

Основным расчётом для призматических шпонок является условный расчёт на смятие.

Условие прочности выбранной шпонки на смятие:

 

 ,

 

где

9585 Нм - вращающий момент (принимается равным грузовому моменту на барабане).

77 мм – диаметр вала, на который посажена шпонка.

90 мм – рабочая длина шпонки.

5,6 мм – глубина врезания шпонки в ступицу.

600 МПа – допускаемое напряжение смятия.

Получим:

 

490 МПа,

 

следовательно, неравенство  выполняется.

Шпонка выбрана, верно.

Итоги расчёта:

Выбраны:

- редуктор Ц2У – 250.

- гидромотор 223.25.

- барабан диаметр 450 мм.

длина 605 мм.

- диаметр каната 16,5 мм.















Расчёт механизма поворота

Расчёт будем вести по методическим указаниям [8].

Задача расчёта:

Спроектировать механизм поворота для поворотной части автомобильного крана.

Исходные данные.

грузоподъёмность (масса груза) 16000 кг.

длина стрелы (при максимальной грузоподъёмности) 9,7м.

вылет (при максимальной грузоподъёмности) 3,75 м.

угловая скорость поворотной части 0,18

масса крюковой подвески 150 кг.

 

4.1 Вес стрелы

 

Стрела состоит из трёх секций: 9,7 м.; 15,7 м.; 21,7 м. (выдвижение секций по 6 метров, то есть ход поршней 6 метров). Для расчёта нужно учитывать также и вес двух гидроцилиндров.

Вес стрелы вычисляют из эмпирической зависимости:

 

 , (3.15)

 

где 0,066 – коэффициент веса стрелы (мал потому, что стрела при подъёме груза расположена наклонно).

 

15,84 10  - грузоподъёмная сила.

3,75 .- вылет.

 

Получим

0,066 15,84 10 3,75 3,92 10

 

Плечо силы тяжести стрелы = 1,75м. (взято из геометрических соотношений между: длиной стрелы, точкой подвеса стрелы и вылетом груза).

 

4.2 Момент сопротивления повороту поворотной части в период пуска:

 

 , (3.16)

 

где  - момент сил трения;

 - момент динамический.

Момент сил трения:

 

0,5  , (3.17)

 

где =0,015 – приведенный коэффициент трения в подшипниках;

реакция упорного подшипника:

 

, (3.18)

 

15,84 10  - грузоподъёмная сила.

3,92 10  - вес стрелы.

9,81 , (3.19)

1300 кг – масса поворотной платформы (принята конструктивно с запасом).

Подставив в (3.19) , получим:

 

1300 9,81=1,3 10 .

Подставим в (3.18) , получим:

 

(15,84+3,924+1,3) 10 =21,1 10 .

 

Упорный подшипник выбирается по статической грузоподъёмности  из условия . Этому условию удовлетворяет подшипник шариковый упорный 8314 . Его внутренний диаметр [7. стр. 20] d  = 70 мм; d  = 70.2 мм; наружный диаметр D =125 мм; высота h =40 мм; статическая грузоподъёмность С = 29 10 .

Расстояние между радиальными подшипниками равным 0,7 м.

Момент, изгибающий колонну:

 

М =3,75F +1,75F -0,75F  , (3.20)

 

Получим

 

М = ( 3,75 15,84+1,75 3,92+0,75 1,3 ) 10 =65,3 10 .

 

Напряжение изгиба самой колонны

 

W  [ ]  = /(n k ) , (3.21)

где n = 1,4 – коэффициент запаса прочности;

k =1,3 – коэффициент безопасности;

= 314 10 Па – предел текучести (Сталь 35 ГОСТ 8731-72) (нормализация).

 

W =n k М /  , (3.22)

 

Получим

W = 1,4 1,3 65,3 10 /314 10 =37,8 10  м .

 

Реакции радиальных подшипников

 

F =M /0,7, (3.23)

 

Получим

 

F =65,3 10 /0,7=93,3 10 .

 

В качестве подшипников выберем два подшипника серии 2556 – роликоподшипник с короткими цилиндрическими роликами (ГОСТ 8328 – 57)

 

С  = 187 10 ;

d = 280 мм. – диаметр внутреннего кольца.

D = 500 мм. – диаметр наружного кольца.

Подставим полученные соотношения в формулу для момента сил трения, получим

 

Т =0,5 0,015(21,2 10 70 10 +93,3 10 2 280 10 )=4029 .

 

Динамический момент равен

 

Т =I Е , (3.24)

 

где I – момент инерции поворотной части крана вместе с грузом;

Е – угловое ускорение.

Е = а /  , (3.25)

а = 0,15 м/c  - минимальное угловое ускорение груза.

Получим Е = 0,15/3,75 = 0,04  .

Момент инерции

 

I = ( 1,75 + 3,75 + 3,75 + 0,75 ) , (3.26)

 

где  = 1,3 – коэффициент, учитывающий инерционность поворотной части;

 = 1,05 – коэффициент, учитывающий инерционность механизма

поворота;

 

 = 4000 кг – масса стрелы;

= 150 кг – масса крюковой подвески;

= 16000 кг – масса поднимаемого груза;

= 1300 кг – масса поворотной части;

Подставив, получим

 

I = 1,3 1,05(4000 3,0625+150 14,0625+16000 14,0625+1300 0,5625) =

=32,8 10 кг м .

 

Полученные соотношения подставляются в (3.24):

 

Т =32,8 10 0,04 = 1,312 10  (13120 Н м).

 

Суммарный момент сопротивления повороту:

 

Т = 4029+13120 = 17149 Н м.


4.3  Мощность гидромотора в период пуска.

 

Мощность гидромотора определится по формуле:

 

P = T /  , (3.27)

 

где =0,18 . – угловая скорость поворотной части;

 - КПД механизма поворота с цилиндрическим редуктором.

 

 , (3.28)

 

= 0,96 – КПД двухступенчатого цилиндрического редуктора;

= 0,95 – КПД открытой зубчатой передачи;

Подставив, получим:

 

= 0,96 0,95= 0,912 ,

 

отсюда мощность гидромотора в период пуска:

 

Р = 17149  0,18/0,912 = 3385 Вт. (3,39 кВт.).

 

Передаточное число редуктора U =48,67 (взято из стандартного ряда передаточных чисел для вертикальных двухступенчатых редукторов).

Выбираем гидромотор 210.20В, нерегулируемый однопоточный, диаметр поршня 20 мм; В – модификация корпуса из алюминиевого сплава; n =1500 об/мин. – частота вращения вала;

Следовательно, угловая скорость вала гидромотора


= = 157 .

 

Номинальный крутящий момент гидромотора

 

Т =P / = 157 Hм.

 

4.4 Общее передаточное число.

 

U=  , (3.29)

 

Получим

 

U=157/0,18 = 872

 

(Механизм поворота содержит: гидромотор, редуктор и открытую зубчатую передачу).

Следовательно:

 

U=U U  , (3.30)

 

где U - передаточное число открытой зубчатой передачи.

Откуда

 

U =U/U  , (3.31)

 

Получим

 

U = 872/48,67 = 17,9

4.5 Расчётный крутящий момент на тихоходном валу редуктора в момент пуска

 

Т = Т U  , (3.32)

 

Получим:

 

Т =157 48,67 0,96 = 7336 Нм.

 

4.6 Расчет процесса пуска

 

Максимальное время пуска при условии минимального ускорения груза:

 

t =  , (3.33)

 

Получим:

 

t  = 0,18/0,04 = 4,5 c. (т.е. t  = 1 … 4,5 c.)

 

Условие пуска:

 

Т  , (3.34)

 

Имеем:

 

157  ,

 

т.е. условие пуска выполняется.

 

4.7 Расчёт процесса торможения

 

Целесообразно принять время торможения меньшим или равным времени пуска, т.к. трение в подшипниках и потери в механизме поворота способствуют торможению.

Примем время торможения равным 4с.

 

Т  , (3.35)

 

где  - момент инерции масс на первичном валу. Очень мал и им пренебрегаем.

Получим равенство:

 

Т 10,98 Нм.

 

Укажем на чертеже механизма поворота техническое требование –

«тормоз отрегулировать на момент 11,5 Нм».

 

4.8 Расчёт открытой зубчатой передачи

 

Примем диаметр делительной окружности подвенцовой шестерни

d = 120 мм. (минимальное число зубьев шестерни: Z =17 … 25).

Модуль зубчатого зацепления:

 

m = d /Z  , (3.36)

Получим:

m = 120/25 – 120/17 = 4.8 … 7.1 мм.

Примем m = 6; тогда Z = 120/6 = 20

Диаметр делительный подвенцовой шестерни:

 

d = 6 20 = 120 мм.

 

Число зубьев зубчатого венца:

 

Z = Z U = 20 17,9 = 358

 

Диаметр делительной окружности зубчатого венца:

 

d = m Z  = 6 358 = 2148 мм.

 

Межосевое расстояние:

 

а = (d +d )/2 = (120+2148)/2 = 1134 мм.

 

Ширина зубчатого венца:

 

b = a  ,

 

где = 0,1 … 0.4 - коэффициент ширины зубчатых колёс (примем =0,12)

Получим

 

b=0,12 1134 = 136,1 мм. (примем b = 140 мм.)

 





Назначение детали в узле

 

Неповоротная часть (платформа) крана представляет собой жесткую сварную раму с выносными опорами и механизмом блокировки задней подвески шасси. Неповоротная рама устанавливается на раме автомобильного шасси, с которой она соединена при помощи болтов или заклепок. В верхней части неповоротной рамы имеется опорно-поворотное устройство, на подвижной части которого закреплена поворотная часть грузоподъемной установки крана.

Неповоротная платформа является одним из основных элементов металлоконструкции крана.

В процессе эксплуатации крана, особенно в период интенсивной эксплуатации (в зимнее время, при тяжелых условиях работы), существует вероятность появления дефектов на кране, в частности на неповоротной платформе. Характерными дефектами металлоконструкции неповоротной части крана являются:

· дефекты сварных соединений;

· деформации и трещины в листовых элементах неповоротной рамы.

Существует несколько методов обнаружения дефектов металлоконструкции. Начиная от визуального осмотра, позволяющего выявить дефекты, представляющие явную опасность возможного хрупкого разрушения, и заканчивая применением неразрушающих методов контроля с высокой разрешающей способностью при обнаружении дефектов (ультразвуковой, рентгеновский, электромагнитный и другие методы).

 

6.1 Ремонт неповоротной платформы в случае обнаружения трещины в сварном шве

Предлагаемый технологический процесс проведения ремонта.

Маршрут проведения ремонта металлоконструкции:

Подготовка под сварку:

Операция 005 – зачистка.

Операция 010 – дефектация.

Операция 015 – термическая кислородная резка.

Операция 020 – зачистка.

Операция 025 – слесарная.

Операция 030 – зачистка.

Операция 035 – контроль внешнего вида.

Заготовка деталей:

Операция 040 – разметка.

Операция 045 – термическая кислородная резка.

Операция 050 – зачистка.

Операция 055 – правка.

Операция 060 – контроль внешнего вида.

Операция 065 – контроль линейных размеров.

Ремонт:

Операция 070 – сварка.

Операция 075 – зачистка.

Операция 080 – контроль внешнего вида.

Операция 085 – сварка.

Операция 090 – зачистка.

Операция 095 – контроль внешнего вида.

Операция 100 – контроль линейных размеров.

Операция 105 – сварка.

Операция 110 – зачистка.

Операция 115 – контроль внешнего вида.

При обнаружении трещины в сварном шве металлоконструкции неповоротной рамы (см. рис.4.1) выполняются следующие основные действия:

Подготовка под сварку:

Операция 010 – дефектация.

Эта операция необходима для обнаружения действительных размеров трещины. Для этого необходимы: керосин, мел и кисть маховая. Место предполагаемой трещины зачищают до блеска, смачивают его керосином и вытирают

 

Рис.4.1 Трещина в сварном шве неповоротной платформы.

 

насухо. Затем поверхность покрывают слоем мела. Трещина проявляется при обработке поверхности кистью.

Операция 015 – термическая кислородная резка.

После обнаружения трещины необходимо удалить сварной шов на длину дефектного места плюс 10 мм в оба конца. Повторная заварка без вырубки дефектного места недопустима. Для данной операции необходимы: резак, кислород газообразный и пропанобутановая смесь.

Заготовка деталей:

Необходимо разметить на листе 6-10 мм деталь, чертеж которой показан на рис. 4.2, в количестве 2-х штук.

 

Рис. 4.2 Косынка.

 

Затем с помощью резака вырезать их по размерам.

Ремонт:

Необходимо с помощью ручной дуговой сварки заварить вырубленные сварные швы; усилить полученный сварной шов 2-мя косынками рис.4.3.

 

Рис. 4.3 Произведен ремонт неповоротной платформы.


Перед проведением всех сварочных работ необходимо производить зачистку обрабатываемых поверхностей. После сварочных работ необходимо зачистить сварные швы от шлака, а околошовные места от брызг металла.

 

6.2 Ремонт неповоротной платформы в случае обнаружения трещины в листовых элементах

 

Предлагаемый технологический процесс проведения ремонта.

Маршрут проведения ремонта металлоконструкции:

Подготовка под сварку:

Операция 005 – зачистка.

Операция 010 – дефектация.

Операция 015 – сверлильная.

Операция 020 – слесарная.

Операция 025 – зачистка.

Операция 030 – контроль внешнего вида.

Заготовка деталей:

Операция 035 – разметка.

Операция 040 – термическая кислородная резка.

Операция 045 – зачистка.

Операция 050 – правка.

Операция 055 – контроль внешнего вида.

Операция 060 – контроль линейных размеров.

Ремонт:

Операция 065 – сварка.

Операция 070 – зачистка.

Операция 075 – контроль внешнего вида.

Операция 080 – сборка.

Операция 085 – сварка.

Операция 090 – зачистка.

Операция 095 – контроль внешнего вида.

При обнаружении трещины в листовых элементах металлоконструкции неповоротной рамы (см. рис.4.4) выполняются следующие основные действия:

 

Рис. 4.4 Трещина в листовом элементе металлоконструкции неповоротной платформы.

 

Подготовка под сварку:

Аналогично предыдущему технологическому процессу. Только необходимо сделать следующие операции:

Операция 015 – сверлильная.

Просверлить 2 отверстия  10 мм в целом металле с центром на расстоянии 10 мм от видимого конца трещины в сторону ее распространения. Это необходимо, чтобы исключить дальнейшее распространение трещины.

Операция 020 – слесарная.

Произвести разделку кромок рис. 4.5. глубина и вид разделки зависят от толщины свариваемого металла.

 

Рис. 4.5 Разделка трещины под сварку.

 

Заготовка деталей:

Необходимо разметить на листе 6-10 мм деталь, чертеж которой показан на рис. 4.6.

 

Рис. 4.6 Деталь.

 

Затем с помощью резака вырезать ее по размерам.

Ремонт:

Необходимо с помощью ручной дуговой сварки приварить полученную деталь.




ВЕДОМОСТЬ ДЕФЕКТОВ

 

Зав. № 354 , Рег. № К-373к ,

Принадлежащей ОАО «ПЗБФ».

Наименование узла, элемента Описание дефекта Заключение о необходимости и сроках устранения дефектов
1 2 3
  Неповоротная рама.   Опорно-поворотное устройство.     Грузовой канат.   Механизм поворота. Гидрооборудование.   Крюковая подвеска. Прочее.     1. Трещины по металлу, расслоение металла. 2. Перекос поворотных обойм по отношению к неподвижному венцу вследствие износа дорожек катания полуобойм до 6 мм при допуске 5 мм. 3. Состояние неработоспособное (обрывы проволок, механический износ). 4. Ослаблено крепление редуктора. 5. Самопроизвольное опускание стрелы. 6. Скол блока. 7. Отсутствует на крюке предохранительный замок. 8. Отсутствует таблица с указанием рег. номера, грузоподъемности и даты проведения испытаний.   До пуска в работу провести капитально-восстановительный ремонт или замену. До пуска в работу провести капитально-восстановительный ремонт или замену. Устранить до пуска в работу. Устранить до пуска в работу. Устранить до пуска в работу. Устранить до пуска в работу. Устранить до пуска в работу. Устранить до пуска в работу.

 

Председатель комиссии: Рахаев В.В.

(2 уровень, удостоверение № 28П-22 от 22.12.00г.)

Члены комиссии: Петров Р.Н.

(2 уровень, удостоверение № 28П-23 от 22.12.00г.)

Шестопалов И.Н.

(2 уровень, удостоверение № 28П-24 от 22.12.00г.)

Гришин А.А.

(2 уровень, удостоверение № 28П-25 от 22.12.00г.)

Рассмотрим ведомости дефектов 20 различных типов автомобильных кранов (280 кранов). Проанализировав эти ведомости, выделим зоны, узлы автомобильного крана в которых возникают дефекты. На рис. 6.1 приведен чертеж автомобильного крана и цифрами обозначены соответствующие узлы.

 

Рис 6.1. Автомобильный кран.

 

На рисунке обозначены цифрами:

1. Металлоконструкция.

2. Приборы безопасности.

3. Канато-блочная система.

4. Механизмы.

5. Грузозахватные приспособления.

6. Гидрооборудование.

Но данное деление можно считать условным, так как оно достаточно крупное. К примеру, под металлоконструкцией подразумевается: поворотная платформа, не поворотная платформа, стрела; под гидрооборудованием - гидрооборудование стрелы и аутригеров и т.д.

После анализа всех дефектов, которые были обнаружены на рассматриваемых кранах, составим сводную таблицу. В таблицу вошли следующие данные:

- тип крана.

- грузоподъемность.

- заводской и регистрационные номера.

- завод изготовитель.

- год выпуска и дата обследования.

- организация владелец крана.

- основные дефекты.

В таблице № 6.1 приведены наименования дефектов, обнаруженных на кранах, а также частота встречаемости дефекта.

 

Таблица № 6.1.

Наименование дефекта Частота встречаемости дефекта

МЕТАЛЛОКОНСТРУКЦИЯ

Состояние окраски неудовлетворительное. 74
Выработка отверстий под оси опорных роликов на корневой секции стрелы и оголовке. 5
Выработка отверстий под пальцы двуногой стойки и пяты стрелы. 2
Ослаблено крепление опорно-поворотного устройства 19
Состояние неповоротной платформы неработоспособное 7
Состояние поворотной платформы неработоспособное. 1
Состояние корневой секции стрелы неработоспособное. 1
Выработка отверстий под оси аутригеров. 3
Деформация оголовка стрелы в месте опирания на опорные ролики. 2
Отклонение от прямолинейности оси стрелы. 2
Выработка отверстий под оси соединения корневой секции и оголовка. 2
Выработка отверстий под оси соединения стрелы и стоек стрелы. 1
Отсутствуют косынки в местах прилегания опорного кольца крепления опорно-поворотного устройства. 1
Коррозионный износ до 15% при допуске 10%. 1
Трещины по сварным швам опорной рамы 1
Трещины по сварным швам и металлу на неповоротной платформе 97
Трещины по усиливающим косынкам на неповоротной платформе 2
Отрыв упора от запрокидывания стрелы 1
Разрыв сварного шва и трещина по сварному шву на поворотной платформе 25
Неработоспособное состояние стрелы 2
Вздутие закрытой полости (стрела) 3
Вздутие верхнего листа корневой секции стрелы 3
Износ полок нижних уголков оголовка стрелы 2
Деформация вертикальных и горизонтальных листов 8
Изогнутость оголовка стрелы (из плоскости стрелы) 1
Деформация аутригеров 14
Деформация раскосов стрелы 29
Трещина по основному металлу подшипниковой обоймы 1
Трещины по сварным швам на оголовке стрелы 5
Опорно-поворотное устройство не работает 2
Деформация двуногой стойки 11
Деформация поперечины стойки стрелы 8
Деформация несущего пояса оголовка стрелы 2
Деформация торцевой пластины на оголовке стрелы 9
Деформация нижнего правого пояса корневой секции стрелы 6
Деформация нижнего левого пояса корневой секции стрелы 5
Деформация верхнего левого пояса корневой секции стрелы 2
Деформация правого нижнего пояса оголовка стрелы 5
Местные деформации нижней стены корневой секции стрелы 1
Трещины по сварным швам корневой секции стрелы 7
Деформация левого нижнего пояса оголовка стрелы 3
Деформация поперечины нижней стены корневой секции стрелы 3
Состояние корневой секции стрелы неработоспособное 1
Перекос поворотных обойм по отношению к неподвижному венцу 16
Ослаблены болтовые соединения опорно-поворотного устройства 76

ПРИБОРЫ БЕЗОПАСНОСТИ

Концевой выключатель на подъем стрелы не работает 111
Приборы безопасности не установлены 27
Концевой выключатель на подъем крюка не работает 115
Отсутствует защита крана от опасного напряжения 159
Ограничитель верхнего положения стрелы не работает 7
Прибор координатной защиты отсутствует 1
Отсутствует переносное заземление крана 1
Ограничитель натяжения грузового каната в транспортном положении не работает 21
ОГП не работает 164
Датчик выдвижения стрелы крана неисправен 6
Состояние указателя наклона крана неработоспособное 96
Состояние указателя вылет грузоподъемность неработоспособное 46
Концевой выключатель реверса не работает 28
Состояние электроразводки неработоспособное 9
Креномер установочный отсутствует или не работает 56
Сигнализатор крена отсутствует 17

КАНАТО-БЛОЧНАЯ СИСТЕМА

Неправильная запасовка грузового каната в клиновой зажим на крюковой подвеске. 18
Неправильная запасовка каната в клиновой зажим на оголовке стрелы 2
Неправильная запасовка стрелового каната в клиновой зажим на поворотной платформе 1
Неправильная запасовка грузового каната в коуш на оголовке стрелы 3
Скол реборд обводных блоков 3
Скол блока на крюковой подвеске 22
Износ зева крюка крюковой обоймы более 10%. 1
Скол блока на оголовке стрелы 50
Перегиб грузового каната в клиновом зажиме 1
Отсутствует вращение опорных роликов оголовка стрелы 28
Состояние смазки канатов неудовлетворительное 8
Состояние растяжек стрелы неработоспособное 10
На оголовке стрелы отсутствует планка от схода грузового каната с обводных блоков 4
Состояние грузового каната неработоспособное 103
Состояние стрелового и грузового каната неработоспособное (многочисленные обрывы проволок) 71

МЕХАНИЗМЫ

Повышенный износ зубьев шлицевых соединений 12
Повышенный износ зубьев редуктора механизма поворота 1
Состояние пневмоклапана привода сцепления неработоспособное 1
Повышенный осевой и радиальный люфт в подшипниках редуктора механизма поворота. 2
Ослаблено крепление редуктора механизма поворота 82
Тормоз не отрегулирован механизма поворота 9
Увеличенная скорость подъема не работает 2
Повышенный боковой зазор штока гидроцилиндра выдвижения оголовка 1
Износ тормозной накладки одного тормоза. 2
Износ зубьев открытой передачи. 1
Состояние соединительной муфты неработоспособное 3
Тормоз механизма подъема стрелы не работает 12

ГРУЗОЗАХВАТНЫЕ ПРИСПОСОБЛЕНИЯ

На крюке отсутствует предохранительный замок 15
Выработка отверстия под ось траверсы крюка 2
На стропах многочисленные обрывы проволок 1

ГИДРООБОРУДОВАНИЕ

Повреждение покрытия гидрошлангов 76
Утечка масла из гидроцилиндра подъема стрелы 36
Утечка масла из гидроцилиндров аутригеров 25
Самопроизвольное опускание аутригеров 4
Самопроизвольное опускание стрелы 9
Разрушение обоймы шарнира гидроцилиндра подъема в узле крепления к стреле 3
Отсутствуют распорные втулки узла крепления гидроцилиндра к стреле 1
Разрушение втулок подшипника гидроцилиндра подъема стрелы в месте соединения с поворотной платформой 2

ПРОЧЕЕ

Отрыв стопорной планки и отсутствие фиксации оси цилиндра подъема стрелы 1
Отсутствует вращение опорных роликов корневой секции стрелы. 5
Нарушено остекление кабины крановщика 15
Состояние кабины крановщика неработоспособное 2
Отсутствует таблица с указанием рег. номера, грузоподъемности и даты проведения испытаний. 123

По полученным данным, можно построить диаграммы. Каждая диаграмма наглядно отображает, какие дефекты характерны для определенного узла крана, и на каком количестве кранов встречается каждый дефект.

 

Дефекты металлоконструкции


Дефекты канато-блочной системы


Дефекты приборов безопасности


Дефекты механизмов.

Дефекты гидрооборудования.


Прочие дефекты.

 

Большинство дефектов, обнаруженных на кранах, связано с тем, что краны отработали положенный срок службы. Но существует ряд дефектов возникших по вине людей эксплуатирующих кран. Это в основном эксплуатация при тяжелых условиях работы, не соответствующих паспортным данным.

После классификации введем кодировку обнаруженных дефектов. Пример кодировки показан на следующей странице.

Кодировка дефектов довольно проста: например, МК-С-I-7, где

МК – дефект металлоконструкции.

С – дефект в стреле.

I – дефект в корневой секции стрелы.

7 – наименование дефекта: деформация раскосов.

 

 






Приборы безопасности

 

Приборы безопасности являются важным элементом необходимым для правильной работы крана. В случае выхода из строя какого-либо прибора может возникнуть аварийная ситуация.

Среди рассмотренных дефектов приборов безопасности встречаются следующие:

 

Табл. № 7.1

Наименование дефекта

Частота встречаемости дефекта

Приборы безопасности

Концевой выключатель на подъем стрелы не работает

111

Приборы безопасности не установлены

27

Концевой выключатель на подъем крюка не работает

115

Отсутствует защита крана от опасного напряжения

159

Ограничитель верхнего положения стрелы не работает

7

Ограничитель натяжения грузового каната в транспортном положении не работает

21

ОГП не работает

164

Датчик выдвижения стрелы крана неисправен

6

Состояние указателя наклона крана неработоспособное

96

Состояние указателя вылет грузоподъемность неработоспособное

46

Концевой выключатель реверса не работает

28

Состояние электроразводки неработоспособное

9

Креномер установочный отсутствует или не работает

56

Сигнализатор крена отсутствует

17

     

 

Полученные данные наглядно представлены на диаграмме.

 

Диаграмма дефектов приборов безопасности

 

Из диаграммы видно, что на 27 кранах приборы безопасности не установлены вообще. На большом количестве кранов отсутствует ограничитель грузоподъемности, являющимся основным элементом необходимым для безопасной работы крана. Рассмотрим приборы и устройства безопасности, установленные на кране КС-4572.

На кране КС-4572 установлены следующие приборы и устройства безопасности: ограничитель грузоподъемности, концевые выключатели, упоры, предохранительные краны, указатели, звуковой сигнал. Ограничитель грузоподъемности предназначен для отключения при работе с недопустимыми грузами грузовой и вспомогательной лебедок, механизма поворота, механизмов подъема и телескопирования стрелы.

Ограничитель грузоподъемности предназначен для предупреждения и автоматического отключения механизмов крана при работе с недопустимыми по массе грузами. В комплект ограничителя грузоподъемности (рис. 7.1) входят: суммирующий механизм 4, установленный на стреле 2, механизм ввода данных длины стрелы 1, механизм ввода угла стрелы, состоящий из тяги 7, закрепленной на рычаге 6 суммирующего механизма 4 и на рычаге 20 кронштейна 15, установленного на поворотной раме 8, а также релейный блок 14, датчик усилий 10 и аппаратура сигнализации (миллиамперметр, красная и зеленая лампы), расположенная на щитке приборов.

Для нагружения датчика усилий применен гидротолкатель 9. На крышке релейного блока 14 установлены галетный переключатель 11 (переключатель характеристик), предохранитель 12 и выключатель 13. Для передачи данных о преобразованной длине стрелы в показывающий прибор указателя грузоподъемности применен канат 5, проложенный по блокам 3, 18, 19.

Блок 18 закреплен на кронштейне 17, установленном на опоре 16. Такая конструкция позволяет поворачиваться блоку 18 вокруг оси стрелы при подъеме (опускании) стрелы.

Рис. 7.1 Ограничитель грузоподъемности крана КС-4572

В ограничителе крана КС-4572 используется принцип, основанный на сравнении усилия с предельно допустимой величиной. Измеряемое и допустимое усилия в данном ограничителе преобразуются датчиками в электрические сигналы (напряжения) и сравниваются при помощи поляризованного реле. При превышении предельно допустимой величины усилия контакты реле размыкают цепь питания электромагнитов. Одновременно отключается сигнальная зеленая лампа и включается красная аварийная лампа.

Суммирующий механизм (рис. 7.2) предназначен для выдачи электрического сигнала в зависимости от длины и угла наклона стрелы для сравнения с электрическим сигналом, выдаваемым датчиком усилий. Суммирующий механизм состоит из корпуса 14, который на кронштейне 13 устанавливается на стреле крана. На цапфе 9 корпуса 14 устанавливается барабан 10, который поводком 8 связан с валиком 24. На резьбовую часть валика 24 навернута гайка 18, несущая на себе вилку 23, которая входит в кольцевую проточку втулки 22. Втулка 22 на шпонке 20 посажена на валик 15 и несет на себе кулачок 17.

На валике 15 установлена шестерня 11 сцепленная с зубчатым сектором 12, закрепленным на валике 16, на другом конце которого на шпонке посажен рычаг 19. На оси 4 установлен трехплечий рычаг 3. На одном плече рычага завальцован шарик, на втором установлена тяга 2, соединяющая его через поводок 1 с осью потенциометра 7, а к третьему — подсоединена пружина 5, поднимающая шарик к поверхности кулачка 17. Гайка 18 канатом 6, проложенным по системе блоков, соединена с рычагом указателя грузоподъемности. Для стопорения валиков 15, 24 предусмотрены болты 21 и 25.

Выдвижение (уменьшение длины) стрелы через канаты механизма ввода длины стрелы приводит к вращению барабана 10, который через поводок 8 передает вращение валику 24. Вращение валика 24 вызывает перемещение вдоль оси гайки 18, тем самым, воздействуя на втулку 22 с кулачком 17. Одновременно перемещение гайки 18 через канат 6 вызывает отклонение рычага указателя грузоподъемности.

При подъеме (опускании) стрелы поворот рычага 19 через зубчатый сектор 12 и шестерню 11 приводит к повороту кулачка 17. Перемещение и поворот кулачка 17 приводят к повороту трехплечего рычага 3, поводка 1 и к перемещению щетки потенциометра, который выдает в электрическую цепь ограничителя грузоподъемности соответствующий электрический сигнал.

Указатель грузоподъемности позволяет определить грузоподъемность крана при работе по следующим грузовым характеристикам: «Работа на опорах», «Телескопирование», «Работа без опор». Определение грузоподъемности производится на шкалах «Работа на опорах» и «Телескопирование» — по перекрестию вертикального и горизонтального визиров; на шкалах «Работа без опор» по горизонтальному визиру; на шкалах «Длина стрелы» — по вертикальному визиру.


Рис. 7.2 Суммирующий механизм ограничителя грузоподъемности крана КС-4572.

 

На рис. 7.3 изображено положение визиров, что соответствует вполне определенному положению стрелы. В указатель грузоподъемности входит прибор 2, установленный на стойке кабины 8. В приборе 2 горизонтальный визир 9 через систему тяг и рычагов, тягу 4 связан со стрелой 1, а двойной вертикальный визир 10 через тягу 3, закрепленную на рычаге 11, и валик 12 с рычагом 13. Преобразованная длина стрелы от суммирующего механизма, расположенного на стреле 1, передается на поворотную платформу канатом 6, один конец которого закреплен на гайке суммирующего механизма, а другой — на рычаге 13. Перемещение визиров 10 длины стрелы при уменьшении длины стрелы происходит под действием пружины 5.

 

Рис. 7.3 Указатель грузоподъемности крана КС-4572.

 

Ограничитель подъема крюка (рис. 7.4) предназначен для автоматического отключения механизма грузовой лебедки при подъеме крюковой подвески на предельную высоту и установлен на оголовке стрелы. На основании 6 установлен конечный выключатель 5. Грузик 3 подвешен на неподвижной ветви грузового каната с помощью троса 4.

Под действием массы грузика постоянно замкнуты контакты выключателя.

При подходе крюковой подвески к головке стрелы приподнимается грузик 3, контакты выключателя размыкаются и обесточивают электромагнит парораспределителя, механизм грузовой лебедки останавливается.

Рис. 7.4 Ограничитель подъема крюка крана КС-4572.




Введение

 

1.1 Область применения (использования).

 

Автомобильный кран 16т на шасси КамАЗ-53213, гидравлический, предназначен для выполнения погрузочно-разгрузочных и строительно-монтажных работ с обычными и разрядными грузами на рассредоточенных объектах.

 

1.2 Цель и назначение разработки

 

Кран автомобильный, грузоподъёмностью 16тонн, создаётся в связи с заменой снимаемого с производства крана.

 

1.3 Технические требования

 

1.3.1 Состав крана и требования к его конструктивному устройству

Проектируемый кран гидравлический, полноповоротный, с жёсткой подвеской телескопической стрелы, состоит из следующих составных частей:

· неповоротная часть: коробка отбора мощности, рама, опоры выносные, стойка стрелы, механизм блокировки подвески, шасси автомобиля, гидрооборудование неповоротной части, пневмооборудование, облицовка.

· поворотная часть: лебёдка грузовая с прижимным роликом, механизм поворота, рама поворотная, опорно-поворотное устройство, кабина, кожух, отопитель, гидрооборудование поворотной части.

· кран оборудован ограничителем нагрузки крана ОНК - 140 – 05.

· стреловое оборудование: канат D = 16,5мм, крюковая подвеска с крюком грузоподъёмностью 16тонн, стрела, гидроцилиндр подъёма стрелы.

· приводы управления: привод управления рабочими операциями, привод управления двигателем.

· электрооборудование: одиночный ЗИП.

 

1.3.2. Требуемые технические данные

· грузоподъёмность, тонн, максимальная:

на выносных опорах 16

без выносных опор 3

при передвижении с грузом на крюке 3

· высота подъёма крюка, м, максимальная 21,7

· вылет, м, максимальный 18,5

· грузоподъёмность при выдвижении телескопической стрелы, максимальная, тонн 4

· максимальная глубина опускания крюка для стрелы 9,7м с грузом 8т на вылете 5м, м. 12

· длина стрелы, м 9,7…21,7

· скорость подъёма-опускания номинального груза, м/сек.

· максимальная скорость подъёма-опускания крюка без груза, м/сек

· скорость изменения вылета крюка, м/сек:

при подъеме (опускании) стрелы 0,15

при выдвижении (втягивании) стрелы 0,13

· частота вращения поворотной части, об/мин. 1,75

· скорость передвижения крана, км/час:

транспортная 50

рабочая с грузом на крюке 5

· размеры опорного контура, м:

длина 3,85

· ширина: передних опор 4,8

задних опор 4,8

· угол поворота, град:

без груза на крюке со стрелой 9,7м.360

с грузом на крюке при работе на опорах 240

с грузом на крюке при работе без опор 240

· полная масса крана, кг. 21500

 

1.3.3. Требования к надёжности

Средний ресурс до первого капитального ремонта должен быть не менее 5000 часов. Наработка на отказ должна быть не менее 100 часов. Смазочные устройства должны обеспечивать работоспособность механизмов крана без смены смазки в период между техническими обслуживаниями.

Мероприятия по техническому обслуживанию должны включать:

- контрольные осмотры;

- ежедневные обслуживания;

- номерные технические обслуживания;

- сезонное обслуживание;

 

1.3.4. Требования к уровню унификации и стандартизации.

Основные механизмы и узлы крана максимально унифицированы с механизмами и узлами автокранов серийно выпускаемых.

Коэффициент применяемости должен быть не ниже 70%.

Коэффициент повторяемости должен быть не ниже 1,3.

 

1.3.5. Требования эстетические.

Кран по внешнему виду и отделке должен отвечать современным требованиям технической эстетики. Эстетический показатель должен быть не ниже 9 баллов.

1.3.6. Требования к исходным материалам составных частей крана.

В конструкции проектируемого крана используются материалы, применяемые для изготовления кранов КС – 3572 , КС – 3571 , КС – 3576 , а также другие материалы. Блоки грузового полиспаста крана изготавливаются из чугуна марки СЧ 18 – 36 ГОСТ 1412 – 70 «Отливки из серого чугуна».

1.3.7. Условия эксплуатации.

Проектируемый кран предназначен для эксплуатации в условиях, установленных ГОСТ 22827 – 77 «Краны стреловые самоходные общего назначения. Технические условия», с учётом требований, установленных данным техническим заданием.

 

1.3.8. Дополнительные требования.

· Кран должен быть работоспособным:

при эксплуатации в любое время года и суток при температуре окружающего воздуха от +40 до -40 .

при уклоне местности – 3 .

при наклоне крана (наклон конструкции, к которой прикреплена стрела) относительно горизонта:

на выносных опорах – 1,5 .

без выносных опор – 6 .

с соответствующим уменьшением грузовых характеристик на 80%.

· Время развёртывания крана (при работающем двигателе), из транспортного положения в рабочее или из рабочего в транспортное, расчётом из двух человек, не более 5 минут.

· Конструкция крана должна обеспечивать:

предотвращение повреждения блоков;

возможность работы перед кабиной;

механизированную блокировку рессор тележки шасси;

запас прочности грузового каната не менее 6.

· Кран должен иметь защитную окраску хлорвиниловой эмалью ХВ 518 по грунту №138 или ГФ – 020.

· Гидравлический привод должен обеспечивать плавное, бесступенчатое регулирование скоростей рабочих механизмов крана.

· Выдвижение секций стрелы должно производиться с помощью гидроцилиндров. Грузоподъёмность при выдвижении секций стрелы должна быть в пределах грузовой характеристики.


2. Механизация

Автомобильный кран предназначен для выполнения погрузочно-разгрузочных и строительно-монтажных работ с обычными и разрядными грузами на рассредоточенных объектах. Максимальная грузоподъемность крана 16 т. В связи с этим, целесообразно применение крана при работе с грузами весом свыше 10 т. Например, при строительстве цехов заводов, при строительстве мостов, при работе с крупн габаритными грузами.

При работе крана, обслуживающему персоналу необходимо учитывать опасные зоны (зоны возможного падения и отскока груза).

Также перед работой необходимо правильно установить кран на строительной площадке.

Правильная установка крана на строительной площадке имеет важное значение для безопасного производства работ. Строительную площадку перед установкой крана необходимо очистить от мусора и строительных отходов, поверхность спланировать, выровнять ямы, канавы и выбоины засыпать землей и утрамбовать. В зимнее время площадку необходимо очистить от снега до грунта и посыпать песком или щебнем.

Стреловые самоходные краны следует устанавливать на строительной площадке после проверки несущей способности грунтового основания, которая должна соответствовать максимальному опорному давлению крана при наибольшей нагрузке. Другим важным критерием допустимости установки крана на строительной площадке служит угол осадки крана. Значительная деформация грунта не так опасна, если она происходит равномерно. Основное влияние на устойчивость кранов оказывает угол наклона крана из-за неравномерной осадки грунта в связи с различными значениями давления опор крана на грунт. Работа крана на свеженасыпанном грунте запрещается. Такая работа может быть разрешена только при использовании инвентарных подстилающих устройств (шпал, плит, щитов). Надежнее для этих целей применять инвентарные подкрановые щиты из металлического проката различных профилей (труб, швеллеров).

Автомобильные, пневмоколесные и гусеничные краны разрешается устанавливать на краю траншеи или котлована при условии соблюдения расстояний, приведенных в таблице 2.1. При невозможности соблюдения этих расстояний откос должен быть укреплен.

Установка на строительной площадке стреловых самоходных кранов производится так, чтобы при работе расстояние между поворотной частью крана (при любом его положении) и строениями, штабелями грузов, колоннами было не менее 1 м. Кран нужно устанавливать на все имеющиеся дополнительные опоры.


Табл. 2.1. Допустимые расстояния от основания котлована (траншеи) до опоры крана

Глубина

котлована

Нк, м

Расстояние от основания откоса до ближайшей опоры

крана при ненасыпном грунте, м

песчаном и гравийном супесчаном суглинистом глинистом лессовом сухом
1 1,5 1,25 1 1 1
2 3 2,4 2 1,5 2
3 4 3,6 3,25 1,75 2,5
4 5 4,4 4 3 3
5 6 5,3 4,74 3,5 3,5

Под опоры следует подкладывать прочные и устойчивые подкладки. Кран нужно установит так, чтобы можно было с одного места выполнить максимум операций по подъемы и перемещению грузов. При этом безопаснее выполнять работу с минимальными вылетами крюка и углами поворота платформы. Установка кранов должна производиться в соответствие с проектом производства работ и инструкцией по эксплуатации крана, разработанной заводом-изготовителем. Установка грузоподъемных кранов на строительной площадке, размещение участков работ, рабочих мест, проездов транспортных средств и проходов для людей должны выполняться с учетом выделения опасных для пребывания людей зон, в пределах которых производиться подъем и перемещение грузов кранами.

Зоны постоянно действующих опасных производственных факторов во избежание доступа посторонних лиц должны быть ограждены защитными ограждениями, удовлетворяющими требованиям ГОСТ 23407-78.

Граница опасной зоны грузоподъемного крана определяется с учетом отлета (падения) груза, перемещаемого краном на наибольшем вылете стрелы.

Границы опасных зон стреловых самоходных кранов определяются исходя из следующих условий:

· установка крана для монтажа устойчивых элементов;

· установка крана для монтажа высоких неустойчивых элементов;

· установка крана вблизи штабеля складирования (здания и т.д.);

· установка крана вблизи котлована (траншеи);

· установка крана вблизи линии электропередач.

Границу опасной зоны при работе крана по монтажу устойчивых элементов можно определить по формуле:

 

, (2.1)

 

где  - радиус опасной зоны;

 - максимальный вылет крюка крана;

 - длина детали;

 - расстояние от вылета крюка до места возможного падения груза.

Расстояние  должно быть не менее, м:


Табл.2.2

Высота подъема груза Н, м Расстояние , м не менее
до 20 7
от 20 до 70 10

 

 

Рис. 2.1. Границы опасной зоны при работе крана по монтажу устойчивых элементов.

 

Например, определим границу опасной зоны, когда автомобильным краном КС – 4572 будет производиться монтаж плит.

Известно:

Наибольший вылет 18,4 м, длина плиты 5 м, наибольшая высота подъема 21,7 м.

Согласно табл. 2  м. Подставим данные значения в формулу, получим:

Границу опасной зоны при монтаже краном неустойчивых элементов можно определить по формуле:


, (2.2)

 

где  - радиус опасной зоны (вылет крюка);

 - рабочий радиус крана;

 - высота подъема груза;

Например, определим границу опасной зоны, при монтаже колонны автомобильным краном КС – 4572.

Известно:

Вылет 10 м, высота подъема груза 10 м.

 

Согласно табл. 2  м. Подставим данные значения в формулу, получим:

 

Рис. 2.2. Границы опасной зоны при работе крана по монтажу неустойчивых элементов.


Граница опасной зоны между штабелем конструкций (стеной здания, колонной) и поворотной частью крана может быть подсчитана по формуле:

, (2.3)

 

где  - габарит поворотной части крана;

 - радиус опасной зоны вращения крана;

 - расстояние между штабелем и краном не менее 1 м.

Например, определим границу опасной зоны между штабелем конструкций (стеной здания, колонной) и поворотной частью крана КС – 4572.

Известно:

Габарит поворотной части крана 2,95 м, расстояние между штабелем и краном принимаем 3 м.

Подставим данные значения в формулу, получим:

 

 

 

Рис. 2.3. Границы опасной зоны между штабелем конструкций и поворотной частью крана.

 

Производство всех работ и пребывание людей в опасной зоне вращения крана строго запрещается.


3. Конструкторская часть

Расчёт грузовой лебёдки. Расчет будем вести по методическим указаниям [3]

Задача расчёта.

Спроектировать механизм подъёма груза автомобильного крана.

Исходные данные.

грузоподъёмность mг = 16000 кг;

высота подъёма H = 21,7 м.

скорость подъёма V = 0,14 м/с.

кратность полиспаста а = 4.

масса крюковой подвески mкр = 150 кг.

 

3.1 Выбор каната и барабана.

 

3.1.1 Находим грузоподъёмную силу по формуле

 

 (3.1)

 

где g = 9,81 м/с - ускорение свободного падения.

Получим .

 

3.1.2 Определяем КПД полиспаста по следующей формуле:

 

 = , (3.2)

 

где  = 0,98 – КПД блока на подшипниках качения;

к = 1 – число обводных блоков.

Получим

 =  = 0,95

 

3.1.3 Рассчитываем наибольшее натяжение ветви каната, набегающей на барабан при подъёме груза по формуле:

 

 , (3.3)

 

где  = 1 – число полиспастов.

Получим

 

F  =

 

3.1.4 Разрывное усилие каната в целом определяется по формуле:

 

, (3.4)

 

где  - минимальный коэффициент использования каната;

 - символ, означающий смещение по таблице [3 стр.25] соответствия групп классификации и коэффициентов использования каната и выбора диаметра. (Допускается изменение коэффициента выбора диаметра барабана , но не более чем на два шага по группе классификации в большую или меньшую сторону, с соответствующей компенсацией, путём изменения величины  на то же число шагов в меньшую или большую сторону), поэтому введём ряд смещений:

Тогда получим ряд значений:

Имеем

Разрывное усилие каната ( ), для кратности , для основного и добавочных значений получим по формуле (4):

 

 

3.1.5 Выбираем тип каната. Для автомобильного крана, работающего на открытом воздухе, при наличии пыли и влаги следует выбирать канат типа

ЛК – Р 6 19+1 о.с., ГОСТ 2688-80 с малым количеством проволок большого диаметра. Этот канат обладает высокой абразивной и коррозионной износостойкостью.

По найденным значениям  находим значения диаметров каната  и маркировочную группу, соответствующую условию прочности каната:

 

, (3.5)

 

где  - разрывное усилие каната в целом (по каталогу). Имеем следующие значения диаметров каната (в скобках указаны маркировочные группы (МПА) и разрывные усилия ( )):

 

 


3.1.6 Минимальный диаметр барабана определяется по формуле

 

, (3.6)

 

где  - коэффициент выбора диаметра барабана.

По таблице [3 стр.25], для заданной группы классификации механизмов, получают основное значение . При смещении по этой таблице вверх и вниз на два шага, находят значения , где

При определении минимального диаметра барабана получим основное

значение . При смещении по этой таблице вверх и вниз на два шага, имеем:

По формуле (3.6) получим:

 

 

3.1.7 Расчётный диаметр барабана , принимают из ряда Ra20.

Имеем

ГОСТ 3241 – 80 «Канаты стальные. Технические условия» приводит ограничение: «Диаметр шейки барабана должен быть не менее 15 номинальных диаметров каната». Следовательно, отбрасываем барабаны с .

3.1.8 Длина барабана с односторонней нарезкой определяется по формуле:

 

 (3.7)


где  - шаг нарезки; - кратность полиспаста; - необходимая

длина каната на барабане ( =50м.) (условно).

 

Получим

 

Как видно из расчётов, вариант с канатом диаметром 16,5мм даёт больший диаметр барабана при меньшей его длине.

Ради запаса примем:

диаметр барабана D = 450мм.

длина барабана L = 605 мм.

диаметр каната d = 16.5 мм.

На автомобильных кранах допустима навивка каната на барабан в несколько слоёв, следовательно, запаса каната на выбранном барабане будет достаточно.

 

3.1.9 Определим угловую скорость барабана по формуле:

 

 , (3.8)

 

Получим


3.2 Выбор гидромотора [4].

 

3.2.1 Находим статическую мощность гидромотора по формуле:

 

 , (3.9)

 

где  =  

 = 0,9 – КПД механизма с цилиндрическим редуктором.

 = 0,965 – КПД гидромотора.

 

Получим  Вт. (  кВт).

 

3.2.2 Крутящий момент создаваемый гидромотором:

 

 , (3.10)

 

где  - угловая скорость гидромотора.

 

 ,

 

 =31,5 передаточное число редуктора (взято максимальное среди двухступенчатых редукторов).

 

Получим .

 

3.2.3 Потребный рабочий объём гидромотора:


 , (3.11)

 

где = 16 МПА – перепад давлений на гидромоторе (выбираем ориентировочно [4 стр.22]).

=0,94 – механический КПД гидромотора в первом приближении.

Получим

 

 

По [4 стр.22] выбираем аксиально-поршневой регулируемый гидромотор 223.25.

Техническая характеристика гидромотора:

потребный рабочий объём гидромотора =214

перепад давлений на гидромоторе 16 МПА.

номинальная подача 4,840

частота вращения вала гидромотора 1400

(Регулировать на частоту 750 )

 

3.3 Выбор редуктора

 

Выбираем редуктор, оснащённый зубчатым венцом на выходном валу,

выберем универсальный двухступенчатый редуктор Ц2У – 250.


3.4 Выбор тормоза

 

3.4.1 Грузовой момент на барабане определяется по формуле:

 

 , (3.12)

где  =

Получим

 

 

3.4.2.Статический момент на входном валу редуктора при торможении определяют по формуле:

 

 , (3.13)

 

где - КПД механизма, который можно принять равным КПД редуктора.

Получим

 

 

3.4.3 Тормозной момент, на который регулируют тормоз, определяют по формуле:

 

 , (3.14)

 

где 2 – коэффициент запаса торможения.

Получим

 

=

 

Выбираем ленточный тормоз (при одинаковом тормозном моменте, по сравнению с колодочным и дисковым тормозами, он имеет меньшие размеры, что важно на автомобильных кранах).

При тормозном шкиве диаметром 180 мм, тормозной момент 800 Н м.

 

3.5 Расчёт шпоночного соединения

 

Для проверки работоспособности спроектированной конструкции следует проверить надёжность шпоночного соединения тихоходный вал редуктора - зубчатый венец. Расчёт будет вестись по методике предложенной [6].

Выбранная шпонка: «Шпонка 22  14 90 ГОСТ 23360 – 78» (Шпонка призматическая).

Основным расчётом для призматических шпонок является условный расчёт на смятие.

Условие прочности выбранной шпонки на смятие:

 

 ,

 

где

9585 Нм - вращающий момент (принимается равным грузовому моменту на барабане).

77 мм – диаметр вала, на который посажена шпонка.

90 мм – рабочая длина шпонки.

5,6 мм – глубина врезания шпонки в ступицу.

600 МПа – допускаемое напряжение смятия.

Получим:

 

490 МПа,

 

следовательно, неравенство  выполняется.

Шпонка выбрана, верно.

Итоги расчёта:

Выбраны:

- редуктор Ц2У – 250.

- гидромотор 223.25.

- барабан диаметр 450 мм.

длина 605 мм.

- диаметр каната 16,5 мм.















Расчёт механизма поворота

Расчёт будем вести по методическим указаниям [8].

Задача расчёта:

Спроектировать механизм поворота для поворотной части автомобильного крана.

Исходные данные.

грузоподъёмность (масса груза) 16000 кг.

длина стрелы (при максимальной грузоподъёмности) 9,7м.

вылет (при максимальной грузоподъёмности) 3,75 м.

угловая скорость поворотной части 0,18

масса крюковой подвески 150 кг.

 

4.1 Вес стрелы

 

Стрела состоит из трёх секций: 9,7 м.; 15,7 м.; 21,7 м. (выдвижение секций по 6 метров, то есть ход поршней 6 метров). Для расчёта нужно учитывать также и вес двух гидроцилиндров.

Вес стрелы вычисляют из эмпирической зависимости:

 

 , (3.15)

 

где 0,066 – коэффициент веса стрелы (мал потому, что стрела при подъёме груза расположена наклонно).

 

15,84 10  - грузоподъёмная сила.

3,75 .- вылет.

 

Получим

0,066 15,84 10 3,75 3,92 10

 

Плечо силы тяжести стрелы = 1,75м. (взято из геометрических соотношений между: длиной стрелы, точкой подвеса стрелы и вылетом груза).

 

4.2 Момент сопротивления повороту поворотной части в период пуска:

 

 , (3.16)

 

где  - момент сил трения;

 - момент динамический.

Момент сил трения:

 

0,5  , (3.17)

 

где =0,015 – приведенный коэффициент трения в подшипниках;

реакция упорного подшипника:

 

, (3.18)

 

15,84 10  - грузоподъёмная сила.

3,92 10  - вес стрелы.

9,81 , (3.19)

1300 кг – масса поворотной платформы (принята конструктивно с запасом).

Подставив в (3.19) , получим:

 

1300 9,81=1,3 10 .

Подставим в (3.18) , получим:

 

(15,84+3,924+1,3) 10 =21,1 10 .

 

Упорный подшипник выбирается по статической грузоподъёмности  из условия . Этому условию удовлетворяет подшипник шариковый упорный 8314 . Его внутренний диаметр [7. стр. 20] d  = 70 мм; d  = 70.2 мм; наружный диаметр D =125 мм; высота h =40 мм; статическая грузоподъёмность С = 29 10 .

Расстояние между радиальными подшипниками равным 0,7 м.

Момент, изгибающий колонну:

 

М =3,75F +1,75F -0,75F  , (3.20)

 

Получим

 

М = ( 3,75 15,84+1,75 3,92+0,75 1,3 ) 10 =65,3 10 .

 

Напряжение изгиба самой колонны

 

W  [ ]  = /(n k ) , (3.21)

где n = 1,4 – коэффициент запаса прочности;

k =1,3 – коэффициент безопасности;

= 314 10 Па – предел текучести (Сталь 35 ГОСТ 8731-72) (нормализация).

 

W =n k М /  , (3.22)

 

Получим

W = 1,4 1,3 65,3 10 /314 10 =37,8 10  м .

 

Реакции радиальных подшипников

 

F =M /0,7, (3.23)

 

Получим

 

F =65,3 10 /0,7=93,3 10 .

 

В качестве подшипников выберем два подшипника серии 2556 – роликоподшипник с короткими цилиндрическими роликами (ГОСТ 8328 – 57)

 

С  = 187 10 ;

d = 280 мм. – диаметр внутреннего кольца.

D = 500 мм. – диаметр наружного кольца.

Подставим полученные соотношения в формулу для момента сил трения, получим

 

Т =0,5 0,015(21,2 10 70 10 +93,3 10 2 280 10 )=4029 .

 

Динамический момент равен

 

Т =I Е , (3.24)

 

где I – момент инерции поворотной части крана вместе с грузом;

Е – угловое ускорение.

Е = а /  , (3.25)

а = 0,15 м/c  - минимальное угловое ускорение груза.

Получим Е = 0,15/3,75 = 0,04  .

Момент инерции

 

I = ( 1,75 + 3,75 + 3,75 + 0,75 ) , (3.26)

 

где  = 1,3 – коэффициент, учитывающий инерционность поворотной части;

 = 1,05 – коэффициент, учитывающий инерционность механизма

поворота;

 

 = 4000 кг – масса стрелы;

= 150 кг – масса крюковой подвески;

= 16000 кг – масса поднимаемого груза;

= 1300 кг – масса поворотной части;

Подставив, получим

 

I = 1,3 1,05(4000 3,0625+150 14,0625+16000 14,0625+1300 0,5625) =

=32,8 10 кг м .

 

Полученные соотношения подставляются в (3.24):

 

Т =32,8 10 0,04 = 1,312 10  (13120 Н м).

 

Суммарный момент сопротивления повороту:

 

Т = 4029+13120 = 17149 Н м.


4.3  Мощность гидромотора в период пуска.

 

Мощность гидромотора определится по формуле:

 

P = T /  , (3.27)

 

где =0,18 . – угловая скорость поворотной части;

 - КПД механизма поворота с цилиндрическим редуктором.

 

 , (3.28)

 

= 0,96 – КПД двухступенчатого цилиндрического редуктора;

= 0,95 – КПД открытой зубчатой передачи;

Подставив, получим:

 

= 0,96 0,95= 0,912 ,

 

отсюда мощность гидромотора в период пуска:

 

Р = 17149  0,18/0,912 = 3385 Вт. (3,39 кВт.).

 

Передаточное число редуктора U =48,67 (взято из стандартного ряда передаточных чисел для вертикальных двухступенчатых редукторов).

Выбираем гидромотор 210.20В, нерегулируемый однопоточный, диаметр поршня 20 мм; В – модификация корпуса из алюминиевого сплава; n =1500 об/мин. – частота вращения вала;

Следовательно, угловая скорость вала гидромотора


= = 157 .

 

Номинальный крутящий момент гидромотора

 

Т =P / = 157 Hм.

 

4.4 Общее передаточное число.

 

U=  , (3.29)

 

Получим

 

U=157/0,18 = 872

 

(Механизм поворота содержит: гидромотор, редуктор и открытую зубчатую передачу).

Следовательно:

 

U=U U  , (3.30)

 

где U - передаточное число открытой зубчатой передачи.

Откуда

 

U =U/U  , (3.31)

 

Получим

 

U = 872/48,67 = 17,9

4.5 Расчётный крутящий момент на тихоходном валу редуктора в момент пуска

 

Т = Т U  , (3.32)

 

Получим:

 

Т =157 48,67 0,96 = 7336 Нм.

 

4.6 Расчет процесса пуска

 

Максимальное время пуска при условии минимального ускорения груза:

 

t =  , (3.33)

 

Получим:

 

t  = 0,18/0,04 = 4,5 c. (т.е. t  = 1 … 4,5 c.)

 

Условие пуска:

 

Т  , (3.34)

 

Имеем:

 

157  ,

 

т.е. условие пуска выполняется.

 

4.7 Расчёт процесса торможения

 

Целесообразно принять время торможения меньшим или равным времени пуска, т.к. трение в подшипниках и потери в механизме поворота способствуют торможению.

Примем время торможения равным 4с.

 

Т  , (3.35)

 

где  - момент инерции масс на первичном валу. Очень мал и им пренебрегаем.

Получим равенство:

 

Т 10,98 Нм.

 

Укажем на чертеже механизма поворота техническое требование –

«тормоз отрегулировать на момент 11,5 Нм».

 

4.8 Расчёт открытой зубчатой передачи

 

Примем диаметр делительной окружности подвенцовой шестерни

d = 120 мм. (минимальное число зубьев шестерни: Z =17 … 25).

Модуль зубчатого зацепления:

 

m = d /Z  , (3.36)

Получим:

m = 120/25 – 120/17 = 4.8 … 7.1 мм.

Примем m = 6; тогда Z = 120/6 = 20

Диаметр делительный подвенцовой шестерни:

 

d = 6 20 = 120 мм.

 

Число зубьев зубчатого венца:

 

Z = Z U = 20 17,9 = 358

 

Диаметр делительной окружности зубчатого венца:

 

d = m Z  = 6 358 = 2148 мм.

 

Межосевое расстояние:

 

а = (d +d )/2 = (120+2148)/2 = 1134 мм.

 

Ширина зубчатого венца:

 

b = a  ,

 

где = 0,1 … 0.4 - коэффициент ширины зубчатых колёс (примем =0,12)

Получим

 

b=0,12 1134 = 136,1 мм. (примем b = 140 мм.)

 





Расчёт стрелы телескопической

Задача расчёта состоит в определении прогиба стрелы при максимальной её нагрузке.

Условия расчёта:

Расчёт телескопической стрелы и отдельных её элементов производится по максимальным нагрузкам, возникающим при различных случаях нагружения её и различных положениях выдвижных секций.

Расчётная схема.

Телескопическая стрела состоит из основания, средней и верхней секций. Средняя и верхняя секции перемещаются по плитам относительно основания. Максимальная длина каждого гидроцилиндра составляет шесть метров. Длина стрелы в собранном состоянии составляет 9,7 м, при выдвижении средней секции - 15,7 м, при выдвижении верхней секции – 21,7 м.

На стрелу действуют:

- вес поднимаемого груза.

- собственный вес.

- усилие в грузовом канате.

- усилия в гидроцилиндрах подъёма стрелы и выдвижения стрелы.

- боковая нагрузка на оголовке стрелы.

Исходные данные.

21,7м. – максимальная длина стрелы (выдвинуты обе секции);

= 9,7м. – длина собранной стрелы;

15,7м. – длина стрелы (выдвинута средняя секция);

Составные части сечения стрелы подбирается таким образом, чтобы прогиб стрелы, при максимальном её нагружении, не превышал 2% от длины стрелы. Для проектируемого крана расчёт прогиба не ведётся из-за сложности проверки правильности расчёта. Следовательно, применяем стрелу с уже существующего крана аналогичной конструкции.

Назначение детали в узле

 

Неповоротная часть (платформа) крана представляет собой жесткую сварную раму с выносными опорами и механизмом блокировки задней подвески шасси. Неповоротная рама устанавливается на раме автомобильного шасси, с которой она соединена при помощи болтов или заклепок. В верхней части неповоротной рамы имеется опорно-поворотное устройство, на подвижной части которого закреплена поворотная часть грузоподъемной установки крана.

Неповоротная платформа является одним из основных элементов металлоконструкции крана.

В процессе эксплуатации крана, особенно в период интенсивной эксплуатации (в зимнее время, при тяжелых условиях работы), существует вероятность появления дефектов на кране, в частности на неповоротной платформе. Характерными дефектами металлоконструкции неповоротной части крана являются:

· дефекты сварных соединений;

· деформации и трещины в листовых элементах неповоротной рамы.

Существует несколько методов обнаружения дефектов металлоконструкции. Начиная от визуального осмотра, позволяющего выявить дефекты, представляющие явную опасность возможного хрупкого разрушения, и заканчивая применением неразрушающих методов контроля с высокой разрешающей способностью при обнаружении дефектов (ультразвуковой, рентгеновский, электромагнитный и другие методы).

 

6.1 Ремонт неповоротной платформы в случае обнаружения трещины в сварном шве

Предлагаемый технологический процесс проведения ремонта.

Маршрут проведения ремонта металлоконструкции:

Подготовка под сварку:

Операция 005 – зачистка.

Операция 010 – дефектация.

Операция 015 – термическая кислородная резка.

Операция 020 – зачистка.

Операция 025 – слесарная.

Операция 030 – зачистка.

Операция 035 – контроль внешнего вида.

Заготовка деталей:

Операция 040 – разметка.

Операция 045 – термическая кислородная резка.

Операция 050 – зачистка.

Операция 055 – правка.

Операция 060 – контроль внешнего вида.

Операция 065 – контроль линейных размеров.

Ремонт:

Операция 070 – сварка.

Операция 075 – зачистка.

Операция 080 – контроль внешнего вида.

Операция 085 – сварка.

Операция 090 – зачистка.

Операция 095 – контроль внешнего вида.

Операция 100 – контроль линейных размеров.

Операция 105 – сварка.

Операция 110 – зачистка.

Операция 115 – контроль внешнего вида.

При обнаружении трещины в сварном шве металлоконструкции неповоротной рамы (см. рис.4.1) выполняются следующие основные действия:

Подготовка под сварку:

Операция 010 – дефектация.

Эта операция необходима для обнаружения действительных размеров трещины. Для этого необходимы: керосин, мел и кисть маховая. Место предполагаемой трещины зачищают до блеска, смачивают его керосином и вытирают

 

Рис.4.1 Трещина в сварном шве неповоротной платформы.

 

насухо. Затем поверхность покрывают слоем мела. Трещина проявляется при обработке поверхности кистью.

Операция 015 – термическая кислородная резка.

После обнаружения трещины необходимо удалить сварной шов на длину дефектного места плюс 10 мм в оба конца. Повторная заварка без вырубки дефектного места недопустима. Для данной операции необходимы: резак, кислород газообразный и пропанобутановая смесь.

Заготовка деталей:

Необходимо разметить на листе 6-10 мм деталь, чертеж которой показан на рис. 4.2, в количестве 2-х штук.

 

Рис. 4.2 Косынка.

 

Затем с помощью резака вырезать их по размерам.

Ремонт:

Необходимо с помощью ручной дуговой сварки заварить вырубленные сварные швы; усилить полученный сварной шов 2-мя косынками рис.4.3.

 

Рис. 4.3 Произведен ремонт неповоротной платформы.


Перед проведением всех сварочных работ необходимо производить зачистку обрабатываемых поверхностей. После сварочных работ необходимо зачистить сварные швы от шлака, а околошовные места от брызг металла.

 

6.2 Ремонт неповоротной платформы в случае обнаружения трещины в листовых элементах

 

Предлагаемый технологический процесс проведения ремонта.

Маршрут проведения ремонта металлоконструкции:

Подготовка под сварку:

Операция 005 – зачистка.

Операция 010 – дефектация.

Операция 015 – сверлильная.

Операция 020 – слесарная.

Операция 025 – зачистка.

Операция 030 – контроль внешнего вида.

Заготовка деталей:

Операция 035 – разметка.

Операция 040 – термическая кислородная резка.

Операция 045 – зачистка.

Операция 050 – правка.

Операция 055 – контроль внешнего вида.

Операция 060 – контроль линейных размеров.

Ремонт:

Операция 065 – сварка.

Операция 070 – зачистка.

Операция 075 – контроль внешнего вида.

Операция 080 – сборка.

Операция 085 – сварка.

Операция 090 – зачистка.

Операция 095 – контроль внешнего вида.

При обнаружении трещины в листовых элементах металлоконструкции неповоротной рамы (см. рис.4.4) выполняются следующие основные действия:

 

Рис. 4.4 Трещина в листовом элементе металлоконструкции неповоротной платформы.

 

Подготовка под сварку:

Аналогично предыдущему технологическому процессу. Только необходимо сделать следующие операции:

Операция 015 – сверлильная.

Просверлить 2 отверстия  10 мм в целом металле с центром на расстоянии 10 мм от видимого конца трещины в сторону ее распространения. Это необходимо, чтобы исключить дальнейшее распространение трещины.

Операция 020 – слесарная.

Произвести разделку кромок рис. 4.5. глубина и вид разделки зависят от толщины свариваемого металла.

 

Рис. 4.5 Разделка трещины под сварку.

 

Заготовка деталей:

Необходимо разметить на листе 6-10 мм деталь, чертеж которой показан на рис. 4.6.

 

Рис. 4.6 Деталь.

 

Затем с помощью резака вырезать ее по размерам.

Ремонт:

Необходимо с помощью ручной дуговой сварки приварить полученную деталь.




Дата: 2019-07-24, просмотров: 774.