ТМ цветных и редких металлов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

ТМ этой группы объединяют ТМ, возникающие при добыче, обогащении и переработке продуктов обогащения руд цветных (Cu, Zn, Pb, Al и Mg) и редких (Ni, Sn, Mo, W, Bi, V, Co, As, Sb и Hg) металлов. Как правило, ТМ этой группы относятся к месторождениям смешанного типа, т.е. пригодны как для доизвлечения металла, так и получения стройматериалов.

ТМ, сложенные вскрышными и вмещающими породами и некондиционными рудами, представлены рыхлыми, полускальными и скальными горными породами и рудами различного вещественного состава, слагающими коренные месторождения. В этом типе месторождений обычно не наблюдается закономерностей в распределении наиболее богатых металлом участков.

ТМ, возникающие при обогащении руд, представлены хвостохранилищами, сложенными измельчённым материалом с водонасыщением до 20-50%, плотностью от 1,5 до 2,5 т/м3 и содержанием глинистых частиц до 50%.

При флотационном обогащении основная масса хвостохранилищ представлена пылевидным материалом, а при гравитационном – мелкозернистым. В пылевидном материале частиц с диаметром менее 0,1 мм свыше 25%, а в мелкозернистом – частиц с диаметром меньше 0,1 мм менее 25%.

Полезные компоненты распределены в хвостохранилищах неравномерно. Возникновение участков с повышенной концентрацией металла зависит не только от изменения показателей технологии обогащения, но и от ряда других факторов, таких как

§ временной режим и место сброса пульпы, которые не являются постоянными;

§ рельеф дна хвостохранилища;

§ окислительные и восстановительные процессы в приповерхностной зоне (см. выше).

Металлоносные участки представлены системой разобщённых пластообразных, линзообразных, изометрических и неправильной формы тел.

В хвостохранилищах помимо цветных и редких металлов наблюдаются повышенные содержания благородных металлов (Ag, Au, Pt) и редкоземельных и рассеянных металлов (Ge, Se, Te и др.).

Шлаки металлургического производства имеют две разновидности:

§ литые, поступающие в шлакоотвалы в горячем состоянии;

§ гранулированные – исходные шлаки после предварительной грануляции.

Распределение полезных компонент в шлаках зависит от изменения состава исходного сырья и показателей извлечения различных компонент, входящих в состав перерабатываемых концентратов, а так же от интенсивности процессов вторичного перераспределения металлов в них, которые для литых шлаков проявляются лишь в приповерхностной части, а для гранулированных – на большую глубину и более интенсивно.

Особенно велики потери металлов при добыче и обогащении руд, а, следовательно, весьма значительны их запасы в ТМ горнодобывающей промышленности. Оценим эти запасы на примере крупнейшего комбината нашей страны – Тырныаузского (Предкавказье), осуществляющего добычу и переработку вольфрамовых руд.

Кондиционными считаются руды с содержанием триоксида вольфрама CWO3 >0,1%. В хвостах флотации содержание CWO3 <0,04%. В процессе подготовительных горных работ эксплуатационный блок расчленяется на кондиционные и некондиционные руды, выемка которых из недр осуществляется раздельно: кондиционные руды отгружаются на обогатительную фабрику, а некондиционные направляются в отвал.

Технологическая схема и показатели добычи и переработки руд показаны на рис. 2, из которого следует, что на долю кондиционных руд приходится всего 13,5% от всей добытой горной массы. В этих рудах содержится лишь 34,6% полезного компонента. Некондиционные руды, составляющие 86,5% добытой горной массы, уходят в отвал, унося с собой 65,4% металла, содержащегося в эксплуатационном блоке. Таким образом, уже первая стадия добычи коренных руд связана с огромными потерями полезного компонента, причём это потери не в недрах, а в отвалах.

 

     
 

 

 


Рис. 2. Схема отработки и обогащения руд Тырныаузского месторождения с технологичес-кими показателями по отдельным этапам.

a, b, q - содержание CWO3 в исходной горной массе, обогащённом и отвальном продуктах соответственно, %;

g - выход продуктов переработки и обогащения руд, %;

e - извлечение триоксида вольфрама в соответствующий продукт, %.

 

На обогатительной фабрике руда подвергается дроблению, измельчению и флотации. В хвосты флотации уходит 13,48% рудной массы, вместе с которой уносится ещё 11,4% полезного компонента. В итоге из всей массы металла, содержащегося в эксплуатационном блоке, в товарный концентрат извлекается всего 23,2%, а 76,8% теряется в отвалах некондиционной руды и хвостохранилищах.

Изучение технологической пробы некондиционной руды Тырныаузского месторождения показало, что отвалы некондиционной руды это полноценное техногенное месторождение, пригодное для переработки, причём со значительно меньшими затратами, чем месторождения коренных руд.

Распределение содержания триоксида вольфрама в порциях этой пробы приведено в таблице 6.

 

Таблица 6.

Распределение триоксида вольфрама в порциях технологической пробы некондиционной руды Тырныаузского месторождения.

Групповые порции

Отдельные порции

Содержание WO3, %

Количество WO3, %

В отдельной порции Накопленное* В отдельной порции** Накопленное***

I

1 0,543 0,543 47,5 47,5
2 0,165 0,342 15,7 63,2
3 0,101 0,271 7,5 70,7
4 0,068 0,217 5,7 76,4
5 0,054 0,185 5,0 81,4

II

6 0,036 0,160 3,3 84,7
7 0,030 0,142 2,6 87,3
8 0,026 0,128 2,2 89,7
9 0,021 0,115 1,9 91,4
10 0,017 0,106 1,4 92,8

III

11 0,015 0,098 1,3 94,1
12 - 20 0,012 0,057 4,6 100

*Среднее содержание WO3 по всем вышестоящим порциям, включая данную (Сn’), ко торое рассчитывается по формуле Сп’=(miCi)(mi)

 n’ n’

i=1 i=1

где mi и Ci – масса и содержание WO3 в i–й порции технологической пробы;

n’ – количество порций, для которых рассчитывается Сn’.

**Относительная масса (Мi, %) WO3 в i-й порции технологической пробы, которая оп-

 n

ределяется равенством Мi= [miCi/ (åmiCi)]·100, %,

 i=1

где n – суммарное количество порций в технологической пробе, в данном случае – 20.

***Суммарная относительная масса WO3 n’) для всех вышестоящих порций, включая

 n’ n

данную, равная Мn’= [(Сn’åmi)/(Сnåmi)]·100, %.

 i=1 i=1

 

Проба состояла из кусков крупностью 25-50 мм. Среднее содержание CWO3=0,057%, т.е. в целом она относится к категории забалансовых руд, так как минимальное промышленное содержание в руде CWO3=0,1%. После взвешивания и анализа каждого куска и ранжирования кусков по содержанию CWO3 вся проба была разделена на 20 отдельных порций примерно равных по массе. Затем эти порции были объединены в три группы. В группу I вошли 5 порций с самыми высокими значениями CWO3, для каждой из которых содержание CWO3 оказалось выше, чем в хвостах флотации, т.е. CWO3>0,04%. В группу II попали 5 порций, у которых среднее накопленное содержание металла оказалось выше, чем минимальное промышленное на месторождении, т.е. CWO3>0,1%, но в самих порциях содержание металла ниже, чем в хвостах флотации, т.е. CWO3 <0,04%. В группу III попали оставшиеся 10 порций, у которых оба показателя ниже установленных пределов.

Данные таблицы 6 показывают, что распределение вольфрама в кусках и порциях некондиционной руды очень неравномерно. Действительно, некондиционная в целом горная масса технологической пробы, оказывается, наполовину (10 из 20 порций) представлена вполне кондиционной рудой, в которой сосредоточено 92,8% всего металла, а его средняя концентрация CWO3=0,106% (групповые порции I и II вместе). Более того, кондиционная рудная часть пробы также наполовину сложена некондиционной рудой со средним содержанием CWO3=0,026% и запасом металла в 11,4% (групповая порция II). Следовательно, в данном случае отвал некондиционных руд на 50% представлен вполне кондиционными рудами, в которых сосредоточено 92,8% металла со средним содержанием CWO3=0,106%. Такой отвал нельзя считать бросовым, он должен рассматриваться как ТМ, вполне пригодное для разработки, причём, с гораздо меньшими затратами, чем коренное, так как горная масса в нём уже добыта и складирована.

Аналогичные результаты анализа состава отвалов некондиционных руд получаются и для многих других типов рудных месторождений. В настоящее время уже имеется опыт переработки отвалов некондиционных руд при использовании крупнопорционной сортировки горной массы и покусковой и мелкопорционной сепарации некондиционных руд с помощью ядернофизических методов. Например, извлечение Pb и Zn из некондиционных полиметаллических руд Алмалыкского ГОК’а (Узбекистан) составляет около 50% от массы полученного комбинатом металла.

ТМ цветных и редких металлов помимо доизвлечения основных полезных компонент и получения стройматериалов (щебень, песок, гравий, закладочный материал и т.д.) могут являться ценным источником попутных элементов, которые в начальный период добычи руд по тем или иным причинам не извлекались. Так, например, отвалы и хвосты медно-никелевых руд Норильска содержат промышленные с точки зрения современных технологий их переработки концентрации платиноидов, золота и серебра, которые ранее извлекались лишь частично. Практически все полиметаллические и медно-цинковые месторождения содержат Ag, Cd редкие и рассеянные элементы, потребность в которых резко возросла в последнее время, и промышленные кондиции на них в связи с этим существенно понизились.

ТМ цветных и редких металлов имеют огромные запасы полезных компонент. В качестве примера рассмотрим суммарные характеристики ТМ медной подотрасли Урала, в которой сосредоточена основная их доля России и для которой известны наиболее полные данные (таблица 7).

 

Таблица 7.

Характеристика ТМ медной подотрасли Урала.

Тип техногенного сырья

Запасы, млн.т

Содержание и запасы полезных компонент, %/тыс.т

Cu Zn S
Некондиционные руды и породы вскрыши 10617 0,34/36098 0,22/23357 8,69/922617
Хвосты обогащения 208,8 0,37/770,1 0,39/820,5 21,9/45811
Шлаки медеплавильных заводов 110,9 0,37/410,2 2,29/2538,6 0,98/1086,4
Итого 10937 37278 26716 969514

 

Из таблицы 7 следует, что основная доля (87,4–96,8%) запасов полезных компонент сосредоточена в ТМ, возникающих при добыче руды коренных месторождений. В целом для медной подотрасли Урала этот показатель даже превосходит соответствующие потери при добыче вольфрамовых руд [85%=65,4/(65,4+11,4) – см. рис. 2] несмотря на то, что медные и медно-цинковые кондиционные руды имеют более высокие содержания Cu (0,35-0,5%) и Zn (1,5%) и как следствие этого должны быть более однородны.

Из этой же таблицы также видно, что даже средние содержания Cu (0,34-0,37%) близки к кондиционным (0,35%-0,5%), поэтому учитывая неравномерность распределения меди в техногенных рудах (от 0,08 до 1,88%), очевидно, что они вполне конкурентоспособны с коренными рудами.

В медных рудах Урала помимо меди содержится ёще 15 других ценных компонент (Zn, Pb, S, Au, Ag, Bi, Cd, Ge, Re, Sn, Te, Ni, In, Sb). Кроме того, в шлаках содержится до 30% и более железа (CFe,кондиц.³16%), которое из них не извлекается.

Наибольшую ценность в хвостах обогащения Уральских руд представляет сера. Её стоимость составляет 30-50% от общей стоимости хвостов. Второе место принадлежит сумме драгоценных металлов (25-45%). Далее идут Cu – 10-20% и Zn – 10-15%.

Каждое ТМ обладает своими особенностями, обусловленными составом исходного сырья для них, технологией добычи, обогащения или переработки и целым рядом других факторов. Поэтому необходима объективная оценка и детальная разведка каждого перспективного для вторичной переработки ТМ. Оценочные работы проведены пока на немногих месторождениях. Рассмотрим для примера результаты таких работ на двух месторождениях: ТМ Бурибаевской обогатительной фабрики и ТМ медиплавильного комбината АООТ «СУМЗ» (Среднеуральский металлургический (медиплавильный) завод).

ТМ Бурибаевской обогатительной фабрики начало формироваться с 1937 г. Площадь хвостохранилища составляет около 18 га. Высота колеблется от 0,5 до 18 м. Хвосты представляют собой обезвоженную пульпу с размером частиц от 0,02 до 0,07 мм.

По результатам опробования шлама содержание СS=10-42%, СCu=0,12-1,64%, СZn£1%. Эти шламы могут быть использованы как сырьё для получения медного и пиритового концентратов.

Хвостохранилище разведано колонковыми скважинами по сети 50´50 м. Анализ размещения меди и серы в шламе хвостохранилища показал, что наибольшее их содержание отмечается в местах слива шлама из трубопровода. По мере удаления от него содержание меди и серы уменьшается. По содержанию этих элементов выделяют три участка:

I участок – СCu>0,5%, СS>34%.

II участок - СCu>0,5%, СS<34%.

III участок - СCu<0,5%, СS<34%

Запасы хвостохранилища составляют 3,96 млн.т при среднем содержании СCu=0,54%, СZn=0,17%, СS=28,18%. Кроме Cu, Zn и S хвосты содержат:

Au – 1,2 г/т (0,00012), Se – 41 г/т (0,0041%), Ge – 1,6 г/т (0,00016%,

Ag – 10,3 г/т (0.00103%), Te – 28 г/т (0,0028%).

Пользуясь этими данными нетрудно подсчитать запасы перечисленных выше металлов в хвостохранилище Бурибаевской обогатительной фабрики (сделать самостоятельно)

Cu – 21384 т, Au – 4,752 т, Te – 110,88 т,

Zn – 6732 т, Ag – 40,788 т, Ge – 6,33 т,

S – 1,116 млн.т, Se – 162,35 т.

ТМ медеплавильного комбината АООТ “СУМЗ” представляет собой шлакоотвал, содержащий несколько десятков млн.т шлаков.

Минеральный состав шлаков:

Магнетит (FeFe2O4), пирротин (Fe1-xS), фаялит {Fe2[SiO4]}, шпинель (MgAl2O4), виллемит {Zn2[SiO4]}, куприт (Cu2O), волластонит {Ca3[Si3O9]}, кварц (SiO2) и некоторые другие рудные и нерудные минералы.

В химическом составе преобладают

Fe – (34-42)%, SiO2 – (32-38)%, Al2O3 – (4,6-7,5)%,

Zn – (2-5)%, S – (0,9-1,2)%, Cu – (0,6-0,7)%.

В ходе отработки шлакоотвала, дробления и флотационного обогащения шлаков на обогатительной фабрике получают медно-цинковый концентрат и магнетит, содержащий песок.


ТМ черных металлов

 

ТМ этой группы, как и ТМ цветных и редких металлов формируются при добыче, обогащении и переработке продуктов обогащения коренных руд чёрных металлов (Fe, Ti, Mn, Cr). Они так же, как правило, относятся к месторождениям смешенного типа, т.е. пригодны для доизвлечения различных металлов и для получения стройматериалов.

Для месторождений Урала этой группы наблюдается аналогичное соотношение запасов для разных их типов:

· ТМ вскрышных и скальных пород и некондиционных руд - >5 000млн. т;

· ТМ хвостов обогащения - ~900 млн. т;

· ТМ шлаков металлургических комбинатов - ~200 млн. т.

Наибольший интерес среди ТМ чёрных металлов вызывают в последнее время хвосты мокрой магнитной сепарации титаномагнетитовых руд Качканарского ГОК’а (Урал). Хвостохранилище занимает площадь 2000´200 м=40 га. В среднем в него ежегодно поступает около 34 млн.т хвостов. Материал их достаточно однороден, с преобладающим фракционным составом 1-4 мм. Распределение металла по поверхности хвостохранилища равномерное. Как следствие однородности состава шламов в них отмечаются стабильные содержания одного из редких металлов–скандия (CSc»130 г/т), представляющего промышленный интерес.

ТМ металлургических предприятий представляют довольно сложные объекты. Строение подобных ТМ рассмотрим на примере ТМ Челябинского электрометаллургического комбината (АО «ЧЭМК»).

Шлаковые отвалы ЧЭМК формируются с начала ферросплавного производства в 1931г. и продолжают функционировать по настоящее время. Они имеют в плане близкую к изометрической форму плоского типа (соотношение площади верхней поверхности и нижнего основания меньше двух). Площадь отвала около 38 га. Мощность тела отвала 16-31 м, средняя её величина – 22,55 м. Плотность материала – 2,5 т/м3.

Вывалка шлаков и отходов различного состава производилась хаотически, без соблюдения системы складирования, поэтому строение отвала сложное. Большая часть его поверхности покрыта пылями различных производств и саморассыпающихся шлаков, которые впоследствии проходят процесс литификации (слёживания), превращаясь в сцементированные тонкообломочные породы.

В отвале содержится около 653 тыс.т марганца. Основное перспективное направление переработки – использование в качестве строительного материала с предварительным извлечением металлических фаз. Характерными стройматериалами, которые могут быть получены из шлаков чёрной металлургии, являются:

· гранулированные шлаки;

· шлаковая пемза как заполнитель бетона;

· шлаковата;

· литой шлаковый щебень;

· шлаковое литьё (брусчатка, плитки, бордюрный камень и пр.);

· стеклокерамические изделия;

· вяжущие добавки в цемент;

· минеральные добавки для улучшения почв.



Дата: 2019-07-24, просмотров: 180.