Тема: Методы и средства экспертного исследования вещественных доказательств
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Эти средства весьма разнообразны и имеют тенденцию ко все большей дифференциации и усложнению. Для получения доказательственной информации чаще других применяются средства для фотографических, микроскопических, физических, химических, физико-химических, голографических, кибернетических исследований.

Современная экспертная криминалистическая техника классифицируется, как правило, по природе тех явлений, которые лежат в основе соответствующего метода. Выделяются:

1) морфологический т.е. изучение внешнего и внутреннего строения физических тел на макро-, микро- и ультра микро уровнях;

2) анализ состава материалов и веществ (элементного, молекулярного, фазового, фракционного);

3) изучение структуры вещества;

4) анализ отдельных свойств вещества, в частности физических (электропроводности, цвета, магнитной проницаемости) и химических.

Рассмотрим эти методы более подробно        

Методы морфологического анализа.

Под морфологией понимают внешнее строение объекта, а также форму, размеры и взаимное расположение (топографию) образующих его структурных элементов (частей целого, включений, деформаций, дефектов и т. п.) на поверхности и в объеме, возникающих при изготовлении, существовании и взаимодействии объекта в расследуемом событии.

Наиболее распространенным методом морфологического анализа является оптическая микроскопия. Микроскопические методы играют в экспертной практике важную роль и обычно предваряют физико-химические исследования. Для прозрачных объектов; структура которых неодинаково поглощает видимые лучи, применяется микроскопия в проходящем свете, а для непрозрачных, например металлов и сплавов, минералов, текстильных волокон, - в отраженном. Все шире эксперты используют также микроскопию в поляризованном свете, особенно для исследования кристаллических веществ, некоторых растительных и животных тканей, натуральных и химических волокон. Она обеспечивает распознавание многих материалов, выявляя в них специфические структурные различия.

Методы оптической микроскопии так же включают в себя:

- ультрафиолетовую и инфракрасную микроскопию позволяет проводить исследования за пределами видимой области спектра. Ультрафиолетовая микроскопия (250-400 нм) применяется для исследования биологических объектов (например, следы крови) инфракрасная микро­скопия (0,75-1,2 мкм) дает возможность изучать внутреннюю структуру объектов, непрозрачных в видимом свете (кристаллы; некоторые виды стекла; следы выстрела; залитые, заклеенные тексты).

- стереоскопическая микроскопия позволяет видеть предмет объемным. Применяется для исследования практически всех видов объектов (следы человека и животных, документы, лакокрасочные покрытия, металлы и сплавы, волокна, минералы, пули и гильзы и т.д.). С помощью двух окуляров создают объемное изображение. Микроскопы, как правило, снабжены насадкой для фотографирования.

- сравнительную микроскопию – осуществляется при помощи сравнительных микроскопов (типа МИС, МС, МСК). Эти микроскопы имеют спаренную оптическую систем, которая позволяет производить одновременное исследование двух объектов. Микроскопы специальные криминалистические типа МСК позволяют наблюдать изображение не только с помощью окуляра, но и на специальном экране. Современные сравнительные микроскопы, оснащенные телекамерами и управляемые персональными компьютерами, позволяют получать комбинированное изображение сравниваемых объектов на телеэкране (телевизионная микроскопия), исследовать объекты в поляризованном свете, со светофильтрами, в инфракрасных или ультрафиолетовых лучах, дают возможность чисто электронным путем изменять масштаб, контрастность и яркость изображения.

При морфологическом анализе объектов, имеющих неровную поверхность, возможности оптической микроскопии весьма ограниченны вследствие малой глубины резкости и ухудшения качества изображения из-за интерференции света. Изучение таких объектов оказалось возможным благодаря применению методов электронной микроскопии. Хорошо себя зарекомендовали растровые электронные микроскопы (РЭМ), позволяющие исследовать объекты с глубиной резкости, в сотни раз превышающей возможности оптической микроскопии, изучая структуру объекта при увеличении в сотни тысяч крат. На РЭМ определяют механизм отделения волос и волокон, признаки воздействия на них внешней среды и химической обработки, а также морфологические характеристики микроследов, образованных частицами различных материалов и веществ.

Для исследования продуктов выстрела, осевших на руках стрелявшего, применяют РЭМ в комплексе с электронным микрозондом. Микроследы выстрела, изъятые на клейкую ленту, анализируются на РЭМ, а потом на рентгеновском микроанализаторе, позволяющем определить элементный состав вещества в микроследах. Обнаружение в них свинца, сурьмы, бария, серы уличает подозреваемого в стрельбе из огнестрельного оружия.

Методы анализа состава

Включают в себя методы элементного, молекулярного, фазового, фракционного анализа.

Методы элементного анализа используются для установления элементного состава, т.е. качественного или количественного содержания определенных химических элементов в данном веществе или материале. Круг их достаточно широк, однако наиболее распространенными в экспертной практике являются следующие:

• Эмиссионный спектральный анализ, заключающийся в том, что с помощью источника ионизации вещество пробы переводится в парообразное состояние и возбуждается спектр излучения этих паров. Проходя далее через входную щель специального прибора - спектрографа, излучение с помощью призмы или дифракционной решетки разлагается на отдельные спектральные линии, которые затем регистрируются на фотопластинке или с помощью детектора. Качественный эмиссионный спектральный анализ основан на установлении наличия или отсутствия в полученном спектре аналитических линий искомых эле­ментов, количественный - на измерении интенсивностей спектральных линий, которые пропорциональны концентрациям элементов в пробе.

• Лазерный микроспектральный анализ основан на поглощении сфокусированного лазерного излучения, благодаря высокой интенсивности которого начинается испарение вещества мишени и образуется облако паров - факел, служащий объектом исследования. За счет повышения температуры и других процессов происходят возбуждение и ио­низация атомов факела с образованием плазмы, которая является источником анализируемого света. Фокусируя лазерное излучение, можно производить спектральный анализ микроколичеств веществ, локализованных в малых объемах (до 10"10 см3 и устанавливать качественный и ко­личественный элементный состав самых разнообразных объектов практически без их разрушения.

• Рентгеноспектральный анализ. Прохождение рентгеновского излучения через вещество сопровождается поглощением излучения, что приводит атомы вещества в возбужденное состояние. Возврат к исходному состоянию сопровождается излучением спектра характеристического рентгеновского излучения. По наличию спектральных линий различных элементов можно определить качественный, а по их интенсивности - количественный элементный состав вещества. Это один из наиболее удобных методов элементного анализа вещественных доказательств, который на качественном и часто полуколичественном уровне является практически неразрушающим, только в редких случаях при исследовании ряда объектов, как правило, органической природы, могут произойти видоизменения отдельных свойства этих объектов.

Методы элементного анализа позволяют установить целое по его отдельным частям, а также выяснить общий источник происхождения различных объектов. Элементный анализ применяется для идентификации лакокрасочных покрытий автомобилей, волокон и тканей, отождествления холодного оружия и взрывчатых устройств по обломкам и осколкам, исследования почвенных объектов. Элементный состав наркотиков природного происхождения указывает на регион произрастания и способы изготовления, а у синтетических позволяет уточнить технологию и место производства. Элементный анализ помогает конкретизировать месторождение ювелирных камней или благородных металлов, дифференцировать драгоценные камни на естественные и искусственные.

 

Дата: 2019-04-23, просмотров: 240.