Методи та засоби вимірювання тиску і температури
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Вступ

 

Доповнення персональних комп’ютерів (мікроЕОМ) набором змінних плат (аналого-цифровим і цифро-аналоговим інтерфейсом) перетворює комп’ютери на могутній засіб вимірювання з десятками вимірювальних функцій при відповідному програмному забезпеченні. Такі засоби вимірювання називаються комп’ютерно-вимірювальними системами (КВС).

Застосування персональних комп’ютерів (ПК) для розв’язання вимірювальних завдань визначається трьома факторами:

складом технічних засобів, що визначають конфігурацію ПК;

наявністю перетворювачів (АЦП, ЦАП тощо), конструктивно сумісних із системним каналом ПК;

обсягом відповідного програмного забезпечення (як системного, так і прикладного), орієнтованого на розв’язання даного вимірювального завдання.

Більше того, КВС за потенціальними можливостями значно багатша свого попередника - вимірювального приладу. Будучи забезпеченою комплектами плат відповідного призначення, а також необхідним складом програмного забезпечення, персональна ЕОМ стає багатоцільовою вимірювальною системою. Маючи розвинене програмне забезпечення у вигляді спеціалізованих операційних систем із мовами високого рівня, векторну систему переривання, засоби прямого доступу до пам’яті, єдиний системний канал, набір уніфікованих інтерфейсів, можна організувати складні системи з управлінням в реальному масштабі часу.



Методи та засоби вимірювання тиску і температури

 

Методи вимірювання тиску

 

Вимірювання і реєстрація тиску широко розповсюджені як в промисловості, так і в повсякденному житті: метеорологічні барометри показують атмосферний тиск, медичні тонометри - тиск у манжеті. Не слід забувати і о висотомірах (альтиметрах), які, по суті, представляють собою ті ж самі барометри, але зі спеціальною шкалою.

Практично усі сенсори тиску відносяться до класу параметричних перетворювачів. У параметричних перетворювачах неелектрична величина перетворюється на приріст параметра електричного кола (R, L, C, M), тому особливістю роботи таких перетворювачів є потреба в додатковому джерелі енергії. Основними видами параметричних перетворювачів, які застосовуються при вимірюванні тиску є тензорезистивні, ємнісні і індуктивні сенсори. Проте інколи використовуються і генераторні перетворювачі. У генераторних перетворювачах вхідна величина перетворюється у вихідний сигнал, який має енергетичні властивості.

Тензометричний сенсор або тензометр - це резистивний елемент, електричний опір якого змінюється при механічній деформації. Це явище називається п’єзоефектом. Деформація може бути повздовжньою, поперечною або деформацією форми.

В основу принципу їх дії покладена зміна активного опору провідника при його деформації. Це підтверджується наступною формулою:

 

 (1.1)

 

В більшості тензометричних сенсорів використовують чотири тензометра, які утворюють схему моста Уітстона.

Широко застосовувані нині наклеювані дротові тензорезистори - це тонкий зигзагоподібний дріт, який наклеюється на еластичну смужку (підкладку). Тензорезистори наклеюються на досліджуваний об’єкт так, щоб вони разом із ним зазнавали деформації стискання або розтягування.

Принципово нові можливості у розвитку тензорезисторних датчиків на основі напівпровідникових чутливих елементів відкрилися з розробкою і дослідженням структур типу “кремній на діелектрику". Із них найбільш вивчена і технологічно освоєна структура “кремній на сапфірі". Це тонка монокристалічна плівка кремнію, вирощена на монокристалічній сапфіровій підкладці з певною кристалографічною орієнтацією. Такі перетворювачі мають хороші пружні властивості, малу похибку гістерезису, широкий діапазон вимірюваних деформацій.

В ємнісних перетворювачах використовується залежність ємності конденсатора від розмірів, взаємного розміщення його обкладинок і діелектричної проникності середовища між ними.

В ідеальному випадку ємність плоского конденсатора

 

 (1.2)

 

З цієї формули випливає, що ємність плоского конденсатора збільшуватиметься при зростанні діелектричної проникності середовища e і площі пластин S і зменшуватиметься зі збільшенням відстані між пластинами d. Отже, всі фізичні величини, які безпосередньо або через допоміжні фактори будуть впливати на змінні e, S і d, можна виміряти за допомогою ємнісних датчиків. Останні можуть мати найрізноманітніше конструктивне виконання: дві чи три плоскі пластини, циліндр у циліндрі тощо.

 

Рисунок 1.1 - Ємнісний перетворювач

 

Таким чином, під ємнісним датчиком розуміють систему електродів, ємність яких однозначно залежить від значення заданої фізичної величини.

Чутливість ємнісних перетворювачів з площинними електродами є лінійною функцією зміни площі взаємодії електродів і зміни діелектричної проникності середовища між ними:

 

 (1.3)

 

У той самий час чутливість відносної відстані між електродами є нелінійною функцією:

 

 (1.4)

 

Основні переваги ємнісних датчиків - висока чутливість; відсутність рухомих деталей, які труться; простота конструкції; мала інерційність. До їх недоліків слід віднести вплив зовнішніх електричних полів, паразитних ємностей, температури і вологості.

Індуктивні перетворювачі із змінною довжиною повітряного зазора, в них використовується залежність індуктивності L від довжини повітряного зазора d. Якщо знехтувати опором магнітопровода, незначним порівняно з магнітним опором зазора, а також втратою потужності в магнітопроводі, то одержимо

 

, (1.5)

 

де m0 - магнітна постійна;

w - число витків котушки;

S - ефективна площа повітряного зазора.

 

Рисунок 1.3 - Індуктивний перетворювач із змінною довжиною повітряного зазора

 

Як наслідок індуктивний перетворювач із змінною довжиною повітряного зазора є нелінійним перетворювачем, залежність L від довжини зазора d близька до гіперболічної.

З достатнім для практики рівнем наближення можна вважати його лише при малих відносних змінах довжини повітряного зазора Dd/d. У реальних конструкціях перетворювачів відносна зміна зазора Dd/d = 0,1...0,15 при нелінійності характеристики 1-3%. Тому такі перетворювачі застосовуються для перетворення невеликих тисків, сил і переміщень.

Диференціальні індуктивні перетворювачі. Значне поліпшення лінійності при одночасному збільшенні чутливості досягається в диференціальних перетворювачах із двома перетворювальними елементами, що мають загальну рухому частину. У них рухомий якір розміщено симетрично відносно обох осердь із початковим зазором , і магнітні опори для потоків, що створюються двома котушками, однакові. Зміна магнітних опорів, що проходить при переміщенні Dd якоря, мають протилежні знаки. При зустрічно-послідовному вмиканні обмоток їх сумарна індуктивність

 

 (1.6)

 

Внаслідок того, що в знаменнику останнього виразу відношення Dd/d знаходиться в квадраті, в диференціальному перетворювачі лінійність характеристики забезпечується в більш широких межах. Через це практично усі індуктивні перетворювачі виконуються диференціальними.

Індуктивні перетворювачі із змінною площею повітряного зазору застосовуються для перетворення переміщень рухомого феромагнітного осердя в діапазоні 5...20 мм. Функція перетворення таких перетворювачів практично лінійна.

Індуктивні перетворювачі плунжерного типу найбільш поширені. В основу дії цих перетворювачів покладено зміну магнітного опору ділянок розсіювання магнітного потоку, а отже, й індуктивності котушки при переміщенні феромагнітного рухомого елемента (плунжера) всередині котушки. Найчастіше застосовуються диференціальні плунжерні перетворювачі з магнітопроводом. Плунжерні перетворювачі мають, як правило, лінійні характеристики і забезпечують перетворення переміщень від кількох міліметрів до кількох десятків сантиметрів.

В залежності від технології, що використовується, сенсор тиску без електронної частини може бути і дуже дорогим, і відносно дешевим. Економічні сенсори, побудовані на основі кристалу кремнію, були настільки вдосконалені, що тепер параметри професійного рівня можна отримати, придбавши виріб приблизно за 25 доларів. Такий сенсор складається з двох основних частин: герметичного корпуса, зазвичай оснащеного штуцерами, які дозволяють під’єднувати гнучкі трубки, і дуже незвичайного напівпровідникового кристала. На одній і тій самій кремнієвій пластині виконані і класичні електронні компоненти, і струнні сенсори натягу.

Революційна ідея полягає у тому, що сама пластина, певна частина якої зроблена дуже тонкою за допомогою мікрообробки, відіграє роль мембрани, яка деформується під впливом тиску.

Перші сенсори, виготовлені за цією технологією, давали не дуже добрі показники. У них був відчутний температурний дрейф, а також значний зсув нуля, який сильно змінювався від зразка до зразка. Електронні пристрої корекції, на щастя, могли суттєво згладити ці недоліки, а на сьогоднішній день стан значно покращився.

Виконання на одній пластині, окрім струнних сенсорів натягу, терморезисторів і резисторів з лазерною підгонкою дозволяє виробникам створювати і випускати вже калібровані і термокомпенсовані сенсори. Використовувати їх дуже просто: достатньо подати постійну напругу на одну діагональ моста, який складається з струнних сенсорів натягу, і знімати з іншої діагоналі цього моста напругу, пропорційну прикладеному тиску.

Сенсори як цього так і інших типів випускає фірма Motorola, яка є ведучим виробником сенсорів тиску. Фірма Motorola пропонує велику кількість сенсорів, які відрізняються підвищеною стійкістю до дії агресивних речовин, високою точністю вимірювань в широкому діапазоні температур, малими габаритами.

 

Рисунок 1.4 - Сенсори тиску фірми Motorola

 

Важливою перевагою сенсорів фірми Motorola є те, що більшисть із них термокомпенсовані, тобто вони мають однакову точність первинного перетворення в широкому диапазоні температур. Окрім того вони мають вбудовану мостову схему і буфер, що дозволяє отримати на виході сигнал постійної напруги, прямо пропорційний тиску, або послідовність імпульсів, шпаруватість яких є інформативним параметром вихідного сигналу сенсора. Для розробки приладу обираємо термокомпенсований тензоперетворювач тиску фірми Motorola MPX1986. Вихідним сигналом цього сенсора є послідовність імпульсів, шпаруватість яких прямо пропорційна тиску.

 

Електричні розрахунки

 

Висновок

 

В курсовому проекті розроблено комп’ютерний засіб вимірювання тиску і температури у кліматичній камері. Комп’ютерний засіб розроблений виходячи з можливості побудови на його основі системи автоматизованого управління технологічними процесами. Розроблена система отримує інформацію з двох первинних вимірювальних перетворювачів тиску і температури.

Розроблена система за усіма характеристиками відповідає умовам технічного завдання.



Література

 

1. Измерения и компьютерно-измерительная техника: Учеб. пособие / В.А. Поджаренко, В.В. Кухарчук. - К.: УМК ВО, 1991. - 240 с.

2. А.Я. Кулик, С.Г. Кривогубченко, М.М. Компанець, Д.С. Кривогубченко Проектування мікропроцесорних засобів автоматики. Під загальною редакцією А.Я. Кулика. Навчальний посібник. - Вінниця: ВДТУ, 2001. - 135с.

3. Гелль П. Как превратить персональный компьютер в измерительный комплекс: Пер. с франц. - 2-е изд., испр. - М.: ДМК, 1999. - 144 с.

4. Кар Дж. Проектирование и изготовление электронной аппаратуры: Пер. с англ. - 2-е изд., стереотип., - М.: Мир, 1986. - 387 с.

5. Датчики давления фирмы Motorola // Электронные компоненты и системы. - Киев: VD MAIS, 2001. - №9. - с.8

6. www.analog.com.

Вступ

 

Доповнення персональних комп’ютерів (мікроЕОМ) набором змінних плат (аналого-цифровим і цифро-аналоговим інтерфейсом) перетворює комп’ютери на могутній засіб вимірювання з десятками вимірювальних функцій при відповідному програмному забезпеченні. Такі засоби вимірювання називаються комп’ютерно-вимірювальними системами (КВС).

Застосування персональних комп’ютерів (ПК) для розв’язання вимірювальних завдань визначається трьома факторами:

складом технічних засобів, що визначають конфігурацію ПК;

наявністю перетворювачів (АЦП, ЦАП тощо), конструктивно сумісних із системним каналом ПК;

обсягом відповідного програмного забезпечення (як системного, так і прикладного), орієнтованого на розв’язання даного вимірювального завдання.

Більше того, КВС за потенціальними можливостями значно багатша свого попередника - вимірювального приладу. Будучи забезпеченою комплектами плат відповідного призначення, а також необхідним складом програмного забезпечення, персональна ЕОМ стає багатоцільовою вимірювальною системою. Маючи розвинене програмне забезпечення у вигляді спеціалізованих операційних систем із мовами високого рівня, векторну систему переривання, засоби прямого доступу до пам’яті, єдиний системний канал, набір уніфікованих інтерфейсів, можна організувати складні системи з управлінням в реальному масштабі часу.



Методи та засоби вимірювання тиску і температури

 

Методи вимірювання тиску

 

Вимірювання і реєстрація тиску широко розповсюджені як в промисловості, так і в повсякденному житті: метеорологічні барометри показують атмосферний тиск, медичні тонометри - тиск у манжеті. Не слід забувати і о висотомірах (альтиметрах), які, по суті, представляють собою ті ж самі барометри, але зі спеціальною шкалою.

Практично усі сенсори тиску відносяться до класу параметричних перетворювачів. У параметричних перетворювачах неелектрична величина перетворюється на приріст параметра електричного кола (R, L, C, M), тому особливістю роботи таких перетворювачів є потреба в додатковому джерелі енергії. Основними видами параметричних перетворювачів, які застосовуються при вимірюванні тиску є тензорезистивні, ємнісні і індуктивні сенсори. Проте інколи використовуються і генераторні перетворювачі. У генераторних перетворювачах вхідна величина перетворюється у вихідний сигнал, який має енергетичні властивості.

Тензометричний сенсор або тензометр - це резистивний елемент, електричний опір якого змінюється при механічній деформації. Це явище називається п’єзоефектом. Деформація може бути повздовжньою, поперечною або деформацією форми.

В основу принципу їх дії покладена зміна активного опору провідника при його деформації. Це підтверджується наступною формулою:

 

 (1.1)

 

В більшості тензометричних сенсорів використовують чотири тензометра, які утворюють схему моста Уітстона.

Широко застосовувані нині наклеювані дротові тензорезистори - це тонкий зигзагоподібний дріт, який наклеюється на еластичну смужку (підкладку). Тензорезистори наклеюються на досліджуваний об’єкт так, щоб вони разом із ним зазнавали деформації стискання або розтягування.

Принципово нові можливості у розвитку тензорезисторних датчиків на основі напівпровідникових чутливих елементів відкрилися з розробкою і дослідженням структур типу “кремній на діелектрику". Із них найбільш вивчена і технологічно освоєна структура “кремній на сапфірі". Це тонка монокристалічна плівка кремнію, вирощена на монокристалічній сапфіровій підкладці з певною кристалографічною орієнтацією. Такі перетворювачі мають хороші пружні властивості, малу похибку гістерезису, широкий діапазон вимірюваних деформацій.

В ємнісних перетворювачах використовується залежність ємності конденсатора від розмірів, взаємного розміщення його обкладинок і діелектричної проникності середовища між ними.

В ідеальному випадку ємність плоского конденсатора

 

 (1.2)

 

З цієї формули випливає, що ємність плоского конденсатора збільшуватиметься при зростанні діелектричної проникності середовища e і площі пластин S і зменшуватиметься зі збільшенням відстані між пластинами d. Отже, всі фізичні величини, які безпосередньо або через допоміжні фактори будуть впливати на змінні e, S і d, можна виміряти за допомогою ємнісних датчиків. Останні можуть мати найрізноманітніше конструктивне виконання: дві чи три плоскі пластини, циліндр у циліндрі тощо.

 

Рисунок 1.1 - Ємнісний перетворювач

 

Таким чином, під ємнісним датчиком розуміють систему електродів, ємність яких однозначно залежить від значення заданої фізичної величини.

Чутливість ємнісних перетворювачів з площинними електродами є лінійною функцією зміни площі взаємодії електродів і зміни діелектричної проникності середовища між ними:

 

 (1.3)

 

У той самий час чутливість відносної відстані між електродами є нелінійною функцією:

 

 (1.4)

 

Основні переваги ємнісних датчиків - висока чутливість; відсутність рухомих деталей, які труться; простота конструкції; мала інерційність. До їх недоліків слід віднести вплив зовнішніх електричних полів, паразитних ємностей, температури і вологості.

Індуктивні перетворювачі із змінною довжиною повітряного зазора, в них використовується залежність індуктивності L від довжини повітряного зазора d. Якщо знехтувати опором магнітопровода, незначним порівняно з магнітним опором зазора, а також втратою потужності в магнітопроводі, то одержимо

 

, (1.5)

 

де m0 - магнітна постійна;

w - число витків котушки;

S - ефективна площа повітряного зазора.

 

Рисунок 1.3 - Індуктивний перетворювач із змінною довжиною повітряного зазора

 

Як наслідок індуктивний перетворювач із змінною довжиною повітряного зазора є нелінійним перетворювачем, залежність L від довжини зазора d близька до гіперболічної.

З достатнім для практики рівнем наближення можна вважати його лише при малих відносних змінах довжини повітряного зазора Dd/d. У реальних конструкціях перетворювачів відносна зміна зазора Dd/d = 0,1...0,15 при нелінійності характеристики 1-3%. Тому такі перетворювачі застосовуються для перетворення невеликих тисків, сил і переміщень.

Диференціальні індуктивні перетворювачі. Значне поліпшення лінійності при одночасному збільшенні чутливості досягається в диференціальних перетворювачах із двома перетворювальними елементами, що мають загальну рухому частину. У них рухомий якір розміщено симетрично відносно обох осердь із початковим зазором , і магнітні опори для потоків, що створюються двома котушками, однакові. Зміна магнітних опорів, що проходить при переміщенні Dd якоря, мають протилежні знаки. При зустрічно-послідовному вмиканні обмоток їх сумарна індуктивність

 

 (1.6)

 

Внаслідок того, що в знаменнику останнього виразу відношення Dd/d знаходиться в квадраті, в диференціальному перетворювачі лінійність характеристики забезпечується в більш широких межах. Через це практично усі індуктивні перетворювачі виконуються диференціальними.

Індуктивні перетворювачі із змінною площею повітряного зазору застосовуються для перетворення переміщень рухомого феромагнітного осердя в діапазоні 5...20 мм. Функція перетворення таких перетворювачів практично лінійна.

Індуктивні перетворювачі плунжерного типу найбільш поширені. В основу дії цих перетворювачів покладено зміну магнітного опору ділянок розсіювання магнітного потоку, а отже, й індуктивності котушки при переміщенні феромагнітного рухомого елемента (плунжера) всередині котушки. Найчастіше застосовуються диференціальні плунжерні перетворювачі з магнітопроводом. Плунжерні перетворювачі мають, як правило, лінійні характеристики і забезпечують перетворення переміщень від кількох міліметрів до кількох десятків сантиметрів.

В залежності від технології, що використовується, сенсор тиску без електронної частини може бути і дуже дорогим, і відносно дешевим. Економічні сенсори, побудовані на основі кристалу кремнію, були настільки вдосконалені, що тепер параметри професійного рівня можна отримати, придбавши виріб приблизно за 25 доларів. Такий сенсор складається з двох основних частин: герметичного корпуса, зазвичай оснащеного штуцерами, які дозволяють під’єднувати гнучкі трубки, і дуже незвичайного напівпровідникового кристала. На одній і тій самій кремнієвій пластині виконані і класичні електронні компоненти, і струнні сенсори натягу.

Революційна ідея полягає у тому, що сама пластина, певна частина якої зроблена дуже тонкою за допомогою мікрообробки, відіграє роль мембрани, яка деформується під впливом тиску.

Перші сенсори, виготовлені за цією технологією, давали не дуже добрі показники. У них був відчутний температурний дрейф, а також значний зсув нуля, який сильно змінювався від зразка до зразка. Електронні пристрої корекції, на щастя, могли суттєво згладити ці недоліки, а на сьогоднішній день стан значно покращився.

Виконання на одній пластині, окрім струнних сенсорів натягу, терморезисторів і резисторів з лазерною підгонкою дозволяє виробникам створювати і випускати вже калібровані і термокомпенсовані сенсори. Використовувати їх дуже просто: достатньо подати постійну напругу на одну діагональ моста, який складається з струнних сенсорів натягу, і знімати з іншої діагоналі цього моста напругу, пропорційну прикладеному тиску.

Сенсори як цього так і інших типів випускає фірма Motorola, яка є ведучим виробником сенсорів тиску. Фірма Motorola пропонує велику кількість сенсорів, які відрізняються підвищеною стійкістю до дії агресивних речовин, високою точністю вимірювань в широкому діапазоні температур, малими габаритами.

 

Рисунок 1.4 - Сенсори тиску фірми Motorola

 

Важливою перевагою сенсорів фірми Motorola є те, що більшисть із них термокомпенсовані, тобто вони мають однакову точність первинного перетворення в широкому диапазоні температур. Окрім того вони мають вбудовану мостову схему і буфер, що дозволяє отримати на виході сигнал постійної напруги, прямо пропорційний тиску, або послідовність імпульсів, шпаруватість яких є інформативним параметром вихідного сигналу сенсора. Для розробки приладу обираємо термокомпенсований тензоперетворювач тиску фірми Motorola MPX1986. Вихідним сигналом цього сенсора є послідовність імпульсів, шпаруватість яких прямо пропорційна тиску.

 

Дата: 2019-05-29, просмотров: 182.