Сетевые сканеры и анализаторы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

КУРСОВАЯ РАБОТА

 

По дисциплине:

языки программирования

 

На тему:

Сетевые сканеры и анализаторы

 

Краснодар 2008



ВВЕДЕНИЕ

 

Данный курсовой проект является обзорной статьей о передаче информации в локальных сетях и методах её отслеживания (нахождения). Собранный мною материал предназначен для опытных пользователей, работающих с локальными сетями, в частности – для сетевых администраторов.



Сканирование

Цель сканирования — выявить открытые "окна" и "двери". В предварительно собранной информации содержатся сведения об адресах подсетей и отдельных компьютеров, полученных с помощью запросов whois и переноса зоны.

Информация, собранная на этом этапе, очень ценна для взломщика, поскольку содержит такие данные, как имена и фамилии сотрудников, номера телефонов, диапазоны IP-адресов, адреса DNS-серверов и почтовых серверов. Теперь можно приступать к выявлению тех компьютеров, которые подключены к сети и достижимы из Internet. Для этого будут использоваться разнообразные средства и приемы, такие как ping-прослушивание, сканирование портов и различные методы, позволяющие автоматизировать выполнение этих задач.

Необходимо отметить, что факт наличия IP-адреса в перенесенной зоне еще не означает, что к соответствующему узлу можно получить доступ через Internet. Необходимо проверить каждый конкретный компьютер в отдельности и выяснить, подключен ли он к Internet и имеются ли на нем порты, находящиеся в состоянии ожидания запросов. Нам приходилось встречать немало неправильно настроенных DNS-серверов, которые предоставляли всем желающим адреса обслуживаемых ими частных сетей (например, 10.10.10.0). Поскольку такие адреса не маршрутизируются по Internet, вы понапрасну будете тратить время, пытаясь связаться с ними. Более подробная информация о том, какие адреса являются маршрутизируемыми, приведена в RFC 1918(http://www.ietf.org/rfc/rfcl918.txt).

Теперь давайте перейдем ко второму этапу сбора информации — сканированию.

Прослушивание сети с помощью утилиты ping

Одним из основных этапов в определении структуры сети является ее автоматизированное прослушивание с помощью утилиты ping по диапазону IP-адресов или адресам подсетей. Цель такого прослушивания — определить, имеется ли у отдельных компьютеров подключение к Internet. Утилита ping отправляет пакеты ICMP ECHO (тип 8) указанному компьютеру и ожидает ответного пакета ICMP ECHO_REPLY (тип 0). Получение такого ответа говорит о том, что компьютер в данный момент подключен к Internet. Хотя при некоторой настойчивости с помощью утилиты ping можно определить количество постоянно подключенных к Internet компьютеров в небольшой и даже средней сети, ручной перебор сетевых адресов будет малоэффективен, если необходимо обследовать корпоративную сеть крупной организации.

Для выполнения ping-прослушивания можно воспользоваться любым из .G® *-» многочисленных средств, разработанных как для системы UNIX, так и для i-""""" Windows NT. В мире UNIX одним из самых надежных и проверенных методов такого прослушивания является использование утилиты fping (http:/ packetstorm security.com/Exploit_Code_Archive/fping.tar.gz). В отличие от других подобных утилит, которые перед переходе к тестированию следующего компьютера ожидают ответа на ранее посланный запрос, утилита fping рассылает все запросы одновременно, а затем ожидает ответа сразу от всех узлов. Именно поэтому утилита fping обеспечивает гораздо более высокую скорость прослушивания большого диапазона IP-адресов, чем обычная утилита ping. Утилита fping была написана специально для использования в сценариях оболочек совместно с утилитой gping (http://www.hacking-exposed.com/tools/tools.html), которая входит в пакет, распространяемый вместе с fping. Утилита gping генерирует список IP-адресов, передаваемых на вход fping для прослушивания. Листинг использования утилиты gping для сетей класса А, В или С может показаться слегка непонятным, поэтому рассмотрим его подробнее.

[tsunami ]'$ gping

usage: gping aO aN bO bN cO cN dO dN

gping a bO bN cO cN dO dN

gping a b cO cN dO dN

gping a b с dO dN

gping abcd

В качестве параметров утилите gping необходимо передать диапазон IP-адресов. На основании этого диапазона будет генерироваться листинг, в котором адреса перебираются друг за другом. Каждый октет передаваемого IP-адреса должен отделяться от остальных пробелами. Например, если мы собираемся генерировать IP-адреса для сети класса С, нам необходимо просто добавить 254 в качестве последнего параметра. Это позволит утилите перебрать все адреса от 192.168.1.1 до 192.168.1.254. Предположим, что эта сеть не содержит подсетей и использует маску подсети 255.255.255.0. Кроме того, мы не будем проверять адрес самой сети 192.168.1.0 и адрес широковещательной рассылки 192.168.1.255. Следует избегать применения утилиты ping к адресам широковещательной рассылки, поскольку это может привести к отказу, или так называемому состоянию DoS (denial of service), если ответный пакет одновременно будет сгенерирован многимиузлами (более подробная информация о том, как установить маску подсети узла, приведена в документации по запросам ICMP). С использованием утилиты gping можно сгенерировать перечень адресов, которые затем будут использоваться утилитой fping.

[tsunami] gping 192 168 1 1 254

192.168.1.1

192.168.1.2

192.168.1.3

192.168.1.4

192.168.1.5

192.168.1.251

192.168.1.252

192.168.1.253

192.168.1.254

Теперь в нашем распоряжении имеется список всех узлов, которые могут находиться в исследуемой сети класса С. Осталось лишь перенаправить вывод утилиты gping на вход утилиты fping, которая выполнит прослушивание сети и определит, какие компьютеры в данный момент подключены к сети.

[tsunami]? gping 192 168 1 1 254 | fping -a

192.168.1.254 is alive

192.168.1.227 is alive

192.168.1.224 is alive

192.168.1.3 is alive

192.168.1.2 is alive

192.168.1.1 is alive

192.168.1.190 is alive

Параметр -а утилиты fping предназначен для включения режима, в котором выводится информация обо всех активных в данный момент компьютерах сети. Если нужно, утилита может выводить и информацию об именах узлов. Этот режим включается с помощью параметра -d. По нашему мнению, параметр -а лучше всего использовать в сценариях оболочки, а параметр -d — при исследовании сети на предмет поиска определенных узлов. Среди других параметров необходимо упомянуть -f, который позволяет вводить адреса из заранее подготовленного файла, а также -h, с помощью которого можно получить перечень всех параметров утилиты и режимов их использования. Еще одной утилитой, о которой мы будем много говорить в этой книге, является утилита nmap, созданная хакером по имени Федор (Fyodor) (www.insecure.org/nmap). Более подробно эта утилита будет рассматриваться ниже в этой главе, однако будет нелишним упомянуть, что, кроме всех остальных возможностей, данная утилита также позволяет выполнить прослушивание сети. Для включения соответствующего режима необходимо указать параметр -SP.

[tsunami] nmap -sP 192.168.1.0/24

Starting nmap V. 2.53 by fyodor@insecure.org

(www.insecure.org/nmap/)

Host (192.168.1.0) seems to be a subnet broadcast

address (returned 3 extra pings).

Host (192.168.1.1) appears to be up.

Host (192.168.1.10) appears to be up.

Host (192.168.1.11) appears to be up.

Host (192.168.1.15) appears to be up.

Host (192.168.1.20) appears to be up.

Host (192.168.1.50) appears to be up.

Host (192.168.1.101) appears to be up.

Host (192.168.1.102) appears to be up.

Host (192.168.1.255) seems to be a subnet broadcast

address (returned 3 extra pings).

Nmap run completed — 256

IP addresses (10 hosts up) scanned in 21 seconds

Что касается приверженцев Windows, они также не остались без внимания. В частности, имеется такая бесплатная утилита, как Finger (рис. 1.1), написанная хакерами из группы Rhino9 (http://www.nmrc.org/files/snt/). Эта утилита является одной из самых быстрых в своем классе. Как и fping, утилита Finger одновременно рассылает несколько ICMP-пакетов ECHO, а затем ожидает поступления ответов. Кроме того, Finger позволяет также получать имена узлов и сохранять результаты своей работы в файле. Такой же скоростью, как и Finger, обладает коммерческий продукт Ping Sweep, предлагаемый компанией SolarWinds (www.solarwinds.net). Поразительная скорость работы Ping Sweep объясняется тем, что данная программа позволяет устанавливать время задержки между передаваемыми пакетами (delay time). Установив это значение равным 0 или 1, можно просканировать всю сеть класса С и получить имена ее узлов менее чем за 7 секунд. Однако при использовании этих средств соблюдайте осторожность, поскольку в этом случае можно значительно снизить пропускную способность какого-нибудь низкоскоростного канала, например канала ISDN с пропускной способностью 128 Кбит/с или Frame Relay (не говоря уже о спутниковом или инфракрасном канале).

Среди других утилит Windows, предназначенных для прослушивания сети, можно отметить WS_Ping ProPack (www.ipswitch.com) и Netscan Tools (www.nwpsw.com). Хотя возможностей этих утилит вполне достаточно для прослушивания небольших сетей, они значительно медленнее Finger и Ping Sweep. Кроме того, не забывайте, что утилиты с графическим интерфейсом, несмотря на удобство их использования, лишают вас возможности их применения в сценариях и автоматизированных процедурах.

Возможно, вы хотите спросить, как поступать, если исследуемый узел блокирует сообщения ICMP? Хороший вопрос. Такой подход зачастую применяется на тех узлах, администраторы которых заботятся о безопасности. Однако, несмотря на блокировку пакетов ICMP, существуют дополнительные средства и методы, позволяющие определить, подключен ли такой узел к сети или нет. Вместе с тем необходимо отметить, что все эти средства оказываются не такими точными и эффективными, как обычные утилиты семейства ping.

В тех случаях, когда обмен данными по протоколу ICMP заблокирован, в первую очередь применяется метод сканирования портов (port scanning), который более подробно рассматривается ниже в этой главе. Просканировав стандартные порты каждого потенциального IP-адреса сети, можно определить, какие узлы подключены к сети. Если порт открыт (opened mode) или находится в режиме ожидания (listening mode), значит, по данному адресу находится подключенный к Internet узел сети. Недостатками этого метода являются большие временные затраты и некоторая неопределенность результата (если по какому-то адресу не удалось обнаружить ни одного порта, то это еще не означает, что соответствующий узел не подключен к Internet). Одной из утилит, которые можно использовать для сканирования портов, является nmap. Как уже упоминалось, с помощью этой утилиты можно проводить ICMP-прослушивание, однако этим перечень ее возможностей далеко не исчерпывается. В частности, эта утилита позволяет выполнять так называемое TCP-прослушивание сканированием (TCP ping scan). Данный режим включается с помощью параметра -рт и указания номера порта, например 80. Выбор порта с номером 80 обусловлен тем, что в подавляющем большинстве случаев именно он используется узлами сети для обмена данными через пограничные маршрутизаторы или брандмауэры с компьютерами, расположенными в так называемой демилитаризованной зоне (DMZ — demilitarized zone). При использовании указанного параметра утилита рассылает узлам исследуемой сети пакеты АСК, а затем ожидает поступления пакетов RST, что свидетельствует о том, что узел подключен к Internet.

[tsunami] nmap -sP -PT80 192.168.1.0/24

TCP probe port is 80

Starting nmap V. 2.53

Host (192.168.1.0) appears to be up.

Host (192.168.1.1) appears to be up.

Host shadow (192.168.1.10) appears to be up.

Host (192.168.1.11) appears to be up.

Host (192.168.1.15) appears to be up.

Host (192.168.1.20) appears to be up.

Host (192.168.1.50) appears to be up.

Host (192.168.1.101) appears to be up.

Host (192.168.1.102) appears to be up.

Host (192.168.1.255) appears to be up.

Nmap run completed (10 hosts up) scanned in 5 seconds

Как видно из приведенного выше листинга, этот метод определения подключенных к Internet узлов очень эффективен, даже если на них блокируется передача пакетов ICMP. С помощью утилиты nmap имеет смысл провести несколько подобных проверок, тестируя такие стандартные порты как SMTP (25), POP (110), AUTH (110), IMАР (143) или другие порты, которые, по вашим сведениям, могут быть уникальными на каком-либо компьютере исследуемой сети.

Еще одной утилитой, специально предназначенной для TCP-прослушивания, является утилита hping (http://www.kyuzz.org/antirez/). По возможностям она даже превосходит утилиту nmap. Утилита hping позволяет пользователям управлять параметрами протокола TCP, что может обеспечить проникновение отправляемых пакетов даже через некоторые устройства управления доступом. Так, установив порт назначения с помощью параметра -р, можно обойти некоторые устройства управления доступом точно так же, как это было сделано с применением утилиты traceroute в главе 1. Поэтому утилита hping может с успехом служить не только для TCP-прослушивания, но и преодолевать преграды некоторых устройств управления доступом благодаря возможности фрагментации пакетов.

[tsunami] hping 192.168.1.2 -S -p 80 -f

HPING 192.168.1.2 (ethO 192.168.1.2):

S set, 40 data bytes

60 bytes from 192.168.1.2:

flags=SA seq=0 ttl=124 id=17501 win=0 time=46.5

60 bytes from 192.168.1.2:

flags=SA seq=l ttl=124 id=18013 win=0 time=169.1

В некоторых случаях простые устройства управления доступом не могут корректно обрабатывать фрагментированные пакеты, что позволяет им проходить через такие устройства и достигать интересующего взломщика адреса. Обратите внимание, что в случае, когда порт открыт, возвращаются флаги TCP SYN (s) и дек (А). Утилиту hping очень легко использовать в сценариях оболочки с параметром счетчика пакетов -cN, где N — это количество пакетов, которые нужно отправить в Internet, прежде чем переходить к выполнению следующей команды сценария. Хотя данный метод и не обладает такой скоростью, как описанные выше методы ICMP-прослушивания, в некоторых случаях только он может помочь выяснить конфигурацию сети. Более подробно утилита hping рассматривается в главе 11, "Брандмауэры".

Последним из средств прослушивания рассмотрим утилиту icmpenum хакером Симплом Номадом (Simple Nomad) (http://www.nmrc.org/files/sunix/icmpenum-1.1.tgz). Эту утилиту удобно использовать для определения архитектуры сети. Утилита icmpenum позволяет быстро выявить подключенные к сети компьютеры, передавая стандартные ICMP-пакеты ECHO, а также ICMP-запросы TIME STAMP REQUEST и INFO. Если входные пакеты ECHO не пропускаются пограничным маршрутизатором или брандмауэром, то подключенные узлы можно по-прежнему идентифицировать с помощью альтернативных пакетов ICMP.

[shadow] icmpenum -i2 -с 192.168.1.0

192.168.1.1 is up

192.168.1.10 is up

192.168.1.11 is up

192.168.1.15 is up

192,168.1.20 is up

192.168.1.103 is up

В приведенном примере сеть класса С (192.168.1.0) была протестирована с использованием ICMP-запроса TIME STAMP REQUEST. Однако реальная мощь утилиты icmpenum заключается в возможности идентификации узлов с помощью ложных пакетов, что позволяет избежать обнаружения злоумышленника. Это возможно благодаря тому, что утилита icmpenum позволяет генерировать ложные пакеты с использованием параметра -s и пассивно ожидать отклика при указании параметра -р.

Подводя итог, можно отметить, что IСМР- или TCP-прослушивание позволяет точно установить, какие компьютеры сети подключены к Internet. Так, в рассматриваемом примере мы установили, что из 255 потенциальных адресов сети класса С к Internet подключены лишь несколько компьютеров. Выявленные узлы становятся предметом первоочередного внимания в дальнейших исследованиях. Таким образом, мы значительно сузили область поиска, что позволяет сэкономить время и силы для более эффективных действий.

Активное исследование стека

 

Прежде чем перейти к рассмотрению возможностей утилит nmap и queso, необходимо вкратце пояснить, в чем же состоит суть исследования стека TCP/IP. Исследование стека (stack fingerprinting) — это очень мощная технология, позволяющая быстро определить тип и версию операционной системы узла с высокой степенью вероятности.

Очевидно, что разные разработчики по-разному подходят к реализации стека TCP/IP. В частности, многие разработчики по-своему трактуют рекомендации документов RFC, что впоследствии проявляется в логике работы тех или иных сетевых служб. Таким образом, зная о существующих различиях и проверив реакцию служб изучаемой системы на различные ситуации, можно практически однозначно определить тип и версию соответствующей операционной системы. Для достижения максимальной достоверности при исследовании стека требуется по крайней мере один порт, находящийся в режиме ожидания запросов. С помощью утилиты nmap можно выдвинуть предположение об используемой операционной системе даже при отсутствии таких портов, однако степень его достоверности в этом случае будет невысокой. Полное описание процесса исследования стека можно найти в статье Федора (Fyodor), впервые публикованной в журнале Phrack Magazine.

Ниже приведен перечень тестов, которые можно использовать в процессе исследования стека для определения типа и версии операционной системы.

· Передача пакетов FIN (FIN probe). Пакет FIN отсылается в открытый порт. Как уже упоминалось, согласно документу RFC 793 исследуемая система не должна отвечать на такое сообщение. Однако многие реализации стека (например, Windows NT) отвечают на них, отправляя пакет FIN/ACK.

· Попытка установки флагов (bogus flag probe). Отсылается пакет SYN с установленным флагом в заголовке TCP, значение которого не определено спецификацией протокола. Некоторые операционные системы, например Linux, в ответном пакете устанавливают этот же флаг.

· Изучение начальной последовательности (Initial Sequence Number (ISN) sampling). Основная задача этого теста — попытаться определить характерные признаки начальной последовательности, генерируемой узлом при получении запроса на установку соединения, которые характерны для той или иной реализации TCP.

· Мониторинг бита фрагментации ("don't fragment bit" monitoring). Этот бит устанавливается некоторыми операционными системами для повышения производительности. Проверка данного бита может помочь в определении типа операционной системы, для которой характерно такое поведение.

· Исходный размер окна TCP (TCP initial window size). Для некоторых реализаций стека протоколов TCP/IP данный параметр уникален, что способствует точности определения типа операционной системы.

· Значение АСК (дек value). В различных реализациях стека IP по-разному задается значение поля АСК. В одних случаях возвращается полученный от вас номер последовательности, а в других — значение номера последовательности, увеличенное на 1.

· Обработка сообщений об ошибках ICMP (ICMP error message quenching). Некоторые операционные системы следуют рекомендациям документа RFC 1812 (www. ietf.org/rfc/rfcl812.txt) и ограничивают скорость передачи сообщений об ошибках. Поэтому, отправляя UDP-пакеты на какой-либо порт (обычно с большим номером), вполне реально измерить количество сообщений об ошибках, поступившее за определенный период, и определить таким образом тип операционной системы.

· Измерение длины сообщений ICMP (ICMP message quoting). При возникновении ошибок ICMP разными операционными системами передаются сообщения различной длины. Проанализировав полученное сообщение, можно сделать некоторые предположения об исследуемой операционной системе.

· Проверка целостности ответных сообщений об ошибках ICMP (ICMP error message-echoing integrity). В некоторых реализациях стека используется изменение заголовка IP при возврате сообщений об ошибках ICMP. Проверив тип изменений, внесенных в заголовок, можно сделать некоторые предположения об операционной системе исследуемого узла.

· Тип службы (TOS — type of service). Можно проверять поле TOS для сообщений "ICMP port unreachable" (порт недоступен). В большинстве реализаций это поле имеет значение 0, однако иногда используются и другие значения.

· Обработка фрагментации (fragmentation handling). Как отмечают Томас Пташек (Thomas Ptacek) и Тим Ньюсхам (Tim Newsham) в своей известной статье Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection (http://www. clark.net/~roesch/idspaper.html), различные стеки обрабатывают перекрывающиеся сообщения по-разному. При сборке фрагментированньк пакетов некоторые стеки записывают новые данные поверх старых и наоборот. Проверив, каким образом были собраны тестовые пакеты, можно сделать предположение об исследуемой операционной системе.

· Параметры TCP (TCP options). Параметры TCP определены в документе RFC 793 и недавно изданном RFC 1323 (www.ietf.org/rfc/rfcl323.txt). Нововведения, описанные в RFC 1323, нашли отражение только в самых последних реализациях стеков. Отправляя пакет с набором различных параметров, таких как по operation, maximum segment size, window scale factor, timestamp и так далее, можно сделать вывод о типе и версии операционной системы.

Для того чтобы воспользоваться утилитой nmap и выполнить все перечисленные тесты (за исключением обработки фрагментации и обработки сообщений об ошибках ICMP), достаточно указать в командной строке параметр -о. Давайте посмотрим, как будет выглядеть полученный результат.

[tsunami] nmap -0192.168.1.10

Starting nmap V. 2.53 by fyodor@insecure.org

Interesting ports on shadow (192.168.1.10) :

Port State Protocol Service

7 open tcp echo

9 open tcp discard

13 open tcp daytime

19 open tcp chargen

21 open tcp ftp

22 open tcp ssh

23 open tcp telnet

25 open tcp smtp

37 open tcp time

111 open tcp sunrpc

512 open tcp exec

513 open tcp login

514 open tcp shell

2049 open tcp nfs

4045 open tcp lockd

TCP Sequence Prediction: Class=randorn positive increments

Difficulty=26590 (Worthy challenge)

Remote operating system guess: Solaris 2.5, 2.51

Как видно, при включении режима исследования стека утилиты nmap можно легко получить достаточно точное определение типа и версии операционной системы. Даже если на изучаемом узле не открыто ни одного порта, утилита nmap поможет сделать довольно точное предположение об используемой операционной системе.

[ tsunami]# nmap -p80 -0 10.10.10.10

Starting nmap V. 2.53 by fyodor@insecure.org

Warning: No ports found open on this machine,

OS detection will be

MUCH less reliable

No ports open for host (10.10.10.10)

Remote OS guesses: Linux 2.0.27 - 2.0.30, Linux 2.0.32-34,

Linux 2.0.35-36, Linux 2.1.24 PowerPC,

Linux 2.1.76, Linux 2.1.91 - 2.1.103, Linux 2.1.122 - 2.1.132; 2.2.0-prel - 2.2.2, Linux 2.2.0-pre6 - 2.2.2-ac5

Nmap run completed -- 1 IP

address (1 host up) scanned in 1 second

Как видно из приведенного листинга, утилита nmap даже без открытых портов, правильно определила операционную систему Linux.

Одной из примечательных особенностей утилиты nmap является то, что листинг сигнатур хранится в отдельном файле с именем nmap-os-fingerprints. При появлении каждой новой версии утилиты этот файл также обновляется, и на момент написания данной книги в нем содержались сотни сигнатур. Если вы хотите добавить новые сигнатуры и повысить таким образом эффективность утилиты nmap, обратитесь ПО адресу http://www.insecure.org:80/cgi-bin/nmap-submit.cgi.

Хотя на момент написания данной книги утилита nmap, по-видимому, позволяет наиболее точно выполнить исследование стека TCP/IP, она, тем не менее, является далеко не первой программой, в которой реализована соответствующая технология. До того как Федор встроил в утилиту nmap средства определения операционной системы, для этих же целей уже была создана утилита queso (http://www.apostols.org/projectz/). Необходимо отметить, что утилита queso не позволяет выполнять сканирование портов и может определять тип операционной системы только при наличии в исследуемой системе открытого порта (по умолчанию используется порт 80). Если порт 80 закрыт, необходимо задать другой открытый порт, как показано в следующем примере, в котором с помощью утилиты queso осуществляется попытка определить тип операционной системы через порт 25.

[tsunami] queso 10.10.10.20:25

10.10.10.20:25 * Windoze 95/98/NT

Контрмеры: защита от определения операционной системы

 

Обнаружение попыток определения операционной системы

 

Многие из упоминавшихся выше средств выявления сканирования с успехом могут служить и для обнаружения попыток определения типа операционной системы, Хотя они не проинформируют вас о том, что выполнялось специальное сканирование с помощью утилиты nmap или queso, с их помощью все же удастся распознать сам факт такого особого сканирования, например с установкой флага SYN.

 

Предупреждение попыток определения операционной системы

 

Хотелось бы посоветовать какое-нибудь средство, позволяющее противодействовать попыткам определения операционной системы, однако, к сожалению, вынуждены констатировать, что решить эту проблему весьма непросто. Конечно, можно изменить исходный код операционной системы (естественно, если он имеется в вашем распоряжении) или поменять ее параметры, влияющие на характеристики стека, однако такое вмешательство может значительно изменить функциональность ОС. Например, в системе FreeBSD 4.x имеется параметр ядра TCP_DROP_SYNFIN, который можно применить для игнорирования пакетов SYN+FIN, используемых утилитой nmap в целях исследования стека. Установка этого параметра поможет пресечь попытки определения типа операционной системы, однако в то же время нарушит поддержку RFC 1644 (TCP Extensions for Transactions).

Вместо этого мы предлагаем создавать такие сети, в которых сканированию могли бы подвергнуться лишь надежные и хорошо защищенные proxy-серверы и брандмауэры, а не компьютеры внутренней сети. В этом случае, даже если взломщику и удастся разведать тип операционной системы того или иного узла, проникновение через устройства защиты будет значительно затруднено.

 

Типы сканирования

 

Прежде чем перейти к описанию конкретных средств, используемых для сканирования портов, необходимо уделить немного времени обзору методов сканирования, известных в настоящее время. Одним из пионеров реализации различных методов сканирования является ранее упоминавшийся Федор (Fyodor). Многочисленные приемы сканирования были реализованы им в утилите nmар. Многие из описанных в данной книге методов сканирования были предложены самим Федором.

TCP-сканирование подключением (TCP connect scan). При таком типе сканирования осуществляется попытка подключения по протоколу TCP к интересующему нас порту с прохождением полной процедуры согласования параметров (handshake), состоящей в обмене сообщениями SYN, SYN/ACK и АСК. Попытки такого сканирования очень легко выявляются. На рис. 1.3 показана диаграмма обмена сообщениями в процессе согласования параметров.

 TCP-сканирование с помощью сообщений SYN (TCP SYN scan). Этот метод называется также сканированием с незавершенным открытием сеанса (half-open scanning), так как при его использовании полное TCP-соединение не устанавливается. Вместо этого на исследуемый порт отправляется сообщение SYN. Если в ответ поступает сообщение SYN/ACK, это означает, что данный порт находится в состоянии LISTENING. Если же ответ приходит в виде сообщения RST/ACK, то, как правило, это говорит о том, что исследуемый порт отключен. Получив ответ, компьютер, выполняющий сканирование, отправляет исследуемому узлу сообщение RST/ACK, поэтому полное соединение не устанавливается. Этот метод обеспечивает более высокую скрытность по сравнению с полным подключением. Многие системы не регистрируют такие попытки, поэтому они довольно часто могут оставаться незамеченными.

 

Рис. 1.3. При установке TCP-соединения происходит обмен тремя сообщениями: (1) клиент отправляет серверу пакет SYN, (2) получает от сервера пакет SYN/ACK и (3) отправляет серверу пакет АСК

 

· TCP-сканирование с помощью сообщений FIN (TCP FIN scan). В этом случае исследуемой системе отправляется пакет FIN. Согласно документу RFC 793 (http://www.ieff.org/rfc/rfc0793.txt), в ответ узел должен отправить пакет RST для всех закрытых портов. Данный метод срабатывает только для стека протоколов TCP/IP, реализованного в системе UNIX.

· TCP-сканирование по методу "рождественской елки" (TCP Xmax Tree scan). При использовании данного метода на исследуемый порт отправляются пакеты FIN, URG и PUSH. Согласно документу RFC 793, исследуемый узел в ответ должен отправить сообщения RST для всех закрытых портов.

· TCP нуль-сканирование (TCP Null scan). Этот метод состоит в отправке пакетов с отключенными флагами. Согласно RFC 793, исследуемый узел должен ответить отправкой сообщения RST для всех закрытых портов.

· TCP-сканирование с помощью сообщений АСК (TCP ACK scan). Этот метод позволяет получить набор правил, используемых брандмауэром. Такое сканирование поможет определить, выполняет ли брандмауэр простую фильтрацию пакетов лишь определенных соединений (пакетов с установленным флагом АСК) или обеспечивает расширенную фильтрацию поступающих пакетов.

· TCP-сканирование размера окна (TCP Windows scan). Такой метод позволяет выявить открытые, а также фильтруемые/нефильтруемые порты некоторых систем (например, AIX и FreeBSD), в зависимости от полученного размера окна протокола TCP.

· TCP-сканирование портов RFC (TCP RFC scan). Этот метод применим только для систем UNIX и используется для выявления портов RFC (Remote Procedure Call — удаленный вызов процедур), связанных с ними программ и их версий.

А UDP-сканирование (UDP scan). Данный метод заключается в отправке на исследуемый узел пакетов по протоколу UDP. Если в ответ поступает сообщение о том, что порт ICMP недоступен (ICMP port unreachabie), это означает, что соответствующий порт закрыт. С другой стороны, если такого сообщения нет, можно предположить, что данный порт открыт. В связи с тем, что протокол UDP не гарантирует доставки, точность данного метода очень сильно зависит от множества факторов, влияющих на использование системных и сетевых ресурсов. Кроме того, UDP-сканирование — очень медленный процесс, что особенно сказывается при попытках сканирования устройств, в которых реализован мощный алгоритм фильтрации пакетов. Поэтому, планируя использовать UDP-сканирование, приготовьтесь к тому, что результаты могут оказаться ненадежными.

Некоторые реализации IP-протокола обладают одним неприятным свойством: пакеты RST отправляются обратно для всех сканируемых портов независимо от того, находятся ли соответствующие порты в режиме ожидания запросов. Учитывайте этот факт при использовании описанных методов. Однако в то же время сканирование подключением и сканирование с использованием сообщений SYN могут применяться для всех узлов.

Предотвращение сканирования

 

Вряд ли можно помешать кому-либо предпринять попытку сканирования портов на вашем компьютере, однако вполне реально свести к минимуму связанный с этим риск. Для этого нужно заблокировать все службы, в работе которых нет необходимости. В среде UNIX данная задача решается с помощью добавления символов комментария в соответствующие строки файла /etc/inetd. corif, а также отключения автоматического запуска ненужных служб в сценарии начальной загрузки. В системе Windows NT также целесообразно отключить все ненужные службы. Однако сделать это сложнее, поскольку из-за сетевой архитектуры Windows NT по крайней мере Порт 139 должен работать постоянно. Тем не менее, остальные службы можно отключить, запустив аплет Services панели управления. Здесь же стоит упомянуть о том, что компанией Tiny Software (www.tinysoftware.com) распространяется модуль ядра, позволяющий выполнять фильтрацию входящих пакетов. С помощью этого модуля можно защитить большинство важных портов. Что же касается других операционных систем и устройств, то нам остается лишь посоветовать как можно внимательнее прочитать соответствующие справочные руководства. Постарайтесь найти в них информацию о том, какие порты вам действительно необходимы и как отключить остальные, чтобы свести риск к минимуму.

Список литературы

 

1. Мурлина В.А. Информатика и программирование. Методическое указание к курсовой работе по дисциплине «Информатика и программирование» для студентов всех форм обучения специальности 080801 – «прикладная информатика в экономике» факультета компьютерных технологий и автоматизированных систем.- Краснодар: издательство КубГТУ, 2004. – 49с.

2. С.В. Пеников «Локальные сети», издательство «АПВ», 2004 - 151 с.

3. Г.Т. Сизов «Системы и сети», издательство «Интер» 2005 – 204 с.

КУРСОВАЯ РАБОТА

 

По дисциплине:

языки программирования

 

На тему:

Сетевые сканеры и анализаторы

 

Краснодар 2008



ВВЕДЕНИЕ

 

Данный курсовой проект является обзорной статьей о передаче информации в локальных сетях и методах её отслеживания (нахождения). Собранный мною материал предназначен для опытных пользователей, работающих с локальными сетями, в частности – для сетевых администраторов.



Сканирование

Цель сканирования — выявить открытые "окна" и "двери". В предварительно собранной информации содержатся сведения об адресах подсетей и отдельных компьютеров, полученных с помощью запросов whois и переноса зоны.

Информация, собранная на этом этапе, очень ценна для взломщика, поскольку содержит такие данные, как имена и фамилии сотрудников, номера телефонов, диапазоны IP-адресов, адреса DNS-серверов и почтовых серверов. Теперь можно приступать к выявлению тех компьютеров, которые подключены к сети и достижимы из Internet. Для этого будут использоваться разнообразные средства и приемы, такие как ping-прослушивание, сканирование портов и различные методы, позволяющие автоматизировать выполнение этих задач.

Необходимо отметить, что факт наличия IP-адреса в перенесенной зоне еще не означает, что к соответствующему узлу можно получить доступ через Internet. Необходимо проверить каждый конкретный компьютер в отдельности и выяснить, подключен ли он к Internet и имеются ли на нем порты, находящиеся в состоянии ожидания запросов. Нам приходилось встречать немало неправильно настроенных DNS-серверов, которые предоставляли всем желающим адреса обслуживаемых ими частных сетей (например, 10.10.10.0). Поскольку такие адреса не маршрутизируются по Internet, вы понапрасну будете тратить время, пытаясь связаться с ними. Более подробная информация о том, какие адреса являются маршрутизируемыми, приведена в RFC 1918(http://www.ietf.org/rfc/rfcl918.txt).

Теперь давайте перейдем ко второму этапу сбора информации — сканированию.

Прослушивание сети с помощью утилиты ping

Одним из основных этапов в определении структуры сети является ее автоматизированное прослушивание с помощью утилиты ping по диапазону IP-адресов или адресам подсетей. Цель такого прослушивания — определить, имеется ли у отдельных компьютеров подключение к Internet. Утилита ping отправляет пакеты ICMP ECHO (тип 8) указанному компьютеру и ожидает ответного пакета ICMP ECHO_REPLY (тип 0). Получение такого ответа говорит о том, что компьютер в данный момент подключен к Internet. Хотя при некоторой настойчивости с помощью утилиты ping можно определить количество постоянно подключенных к Internet компьютеров в небольшой и даже средней сети, ручной перебор сетевых адресов будет малоэффективен, если необходимо обследовать корпоративную сеть крупной организации.

Для выполнения ping-прослушивания можно воспользоваться любым из .G® *-» многочисленных средств, разработанных как для системы UNIX, так и для i-""""" Windows NT. В мире UNIX одним из самых надежных и проверенных методов такого прослушивания является использование утилиты fping (http:/ packetstorm security.com/Exploit_Code_Archive/fping.tar.gz). В отличие от других подобных утилит, которые перед переходе к тестированию следующего компьютера ожидают ответа на ранее посланный запрос, утилита fping рассылает все запросы одновременно, а затем ожидает ответа сразу от всех узлов. Именно поэтому утилита fping обеспечивает гораздо более высокую скорость прослушивания большого диапазона IP-адресов, чем обычная утилита ping. Утилита fping была написана специально для использования в сценариях оболочек совместно с утилитой gping (http://www.hacking-exposed.com/tools/tools.html), которая входит в пакет, распространяемый вместе с fping. Утилита gping генерирует список IP-адресов, передаваемых на вход fping для прослушивания. Листинг использования утилиты gping для сетей класса А, В или С может показаться слегка непонятным, поэтому рассмотрим его подробнее.

[tsunami ]'$ gping

usage: gping aO aN bO bN cO cN dO dN

gping a bO bN cO cN dO dN

gping a b cO cN dO dN

gping a b с dO dN

gping abcd

В качестве параметров утилите gping необходимо передать диапазон IP-адресов. На основании этого диапазона будет генерироваться листинг, в котором адреса перебираются друг за другом. Каждый октет передаваемого IP-адреса должен отделяться от остальных пробелами. Например, если мы собираемся генерировать IP-адреса для сети класса С, нам необходимо просто добавить 254 в качестве последнего параметра. Это позволит утилите перебрать все адреса от 192.168.1.1 до 192.168.1.254. Предположим, что эта сеть не содержит подсетей и использует маску подсети 255.255.255.0. Кроме того, мы не будем проверять адрес самой сети 192.168.1.0 и адрес широковещательной рассылки 192.168.1.255. Следует избегать применения утилиты ping к адресам широковещательной рассылки, поскольку это может привести к отказу, или так называемому состоянию DoS (denial of service), если ответный пакет одновременно будет сгенерирован многимиузлами (более подробная информация о том, как установить маску подсети узла, приведена в документации по запросам ICMP). С использованием утилиты gping можно сгенерировать перечень адресов, которые затем будут использоваться утилитой fping.

[tsunami] gping 192 168 1 1 254

192.168.1.1

192.168.1.2

192.168.1.3

192.168.1.4

192.168.1.5

192.168.1.251

192.168.1.252

192.168.1.253

192.168.1.254

Теперь в нашем распоряжении имеется список всех узлов, которые могут находиться в исследуемой сети класса С. Осталось лишь перенаправить вывод утилиты gping на вход утилиты fping, которая выполнит прослушивание сети и определит, какие компьютеры в данный момент подключены к сети.

[tsunami]? gping 192 168 1 1 254 | fping -a

192.168.1.254 is alive

192.168.1.227 is alive

192.168.1.224 is alive

192.168.1.3 is alive

192.168.1.2 is alive

192.168.1.1 is alive

192.168.1.190 is alive

Параметр -а утилиты fping предназначен для включения режима, в котором выводится информация обо всех активных в данный момент компьютерах сети. Если нужно, утилита может выводить и информацию об именах узлов. Этот режим включается с помощью параметра -d. По нашему мнению, параметр -а лучше всего использовать в сценариях оболочки, а параметр -d — при исследовании сети на предмет поиска определенных узлов. Среди других параметров необходимо упомянуть -f, который позволяет вводить адреса из заранее подготовленного файла, а также -h, с помощью которого можно получить перечень всех параметров утилиты и режимов их использования. Еще одной утилитой, о которой мы будем много говорить в этой книге, является утилита nmap, созданная хакером по имени Федор (Fyodor) (www.insecure.org/nmap). Более подробно эта утилита будет рассматриваться ниже в этой главе, однако будет нелишним упомянуть, что, кроме всех остальных возможностей, данная утилита также позволяет выполнить прослушивание сети. Для включения соответствующего режима необходимо указать параметр -SP.

[tsunami] nmap -sP 192.168.1.0/24

Starting nmap V. 2.53 by fyodor@insecure.org

(www.insecure.org/nmap/)

Host (192.168.1.0) seems to be a subnet broadcast

address (returned 3 extra pings).

Host (192.168.1.1) appears to be up.

Host (192.168.1.10) appears to be up.

Host (192.168.1.11) appears to be up.

Host (192.168.1.15) appears to be up.

Host (192.168.1.20) appears to be up.

Host (192.168.1.50) appears to be up.

Host (192.168.1.101) appears to be up.

Host (192.168.1.102) appears to be up.

Host (192.168.1.255) seems to be a subnet broadcast

address (returned 3 extra pings).

Nmap run completed — 256

IP addresses (10 hosts up) scanned in 21 seconds

Что касается приверженцев Windows, они также не остались без внимания. В частности, имеется такая бесплатная утилита, как Finger (рис. 1.1), написанная хакерами из группы Rhino9 (http://www.nmrc.org/files/snt/). Эта утилита является одной из самых быстрых в своем классе. Как и fping, утилита Finger одновременно рассылает несколько ICMP-пакетов ECHO, а затем ожидает поступления ответов. Кроме того, Finger позволяет также получать имена узлов и сохранять результаты своей работы в файле. Такой же скоростью, как и Finger, обладает коммерческий продукт Ping Sweep, предлагаемый компанией SolarWinds (www.solarwinds.net). Поразительная скорость работы Ping Sweep объясняется тем, что данная программа позволяет устанавливать время задержки между передаваемыми пакетами (delay time). Установив это значение равным 0 или 1, можно просканировать всю сеть класса С и получить имена ее узлов менее чем за 7 секунд. Однако при использовании этих средств соблюдайте осторожность, поскольку в этом случае можно значительно снизить пропускную способность какого-нибудь низкоскоростного канала, например канала ISDN с пропускной способностью 128 Кбит/с или Frame Relay (не говоря уже о спутниковом или инфракрасном канале).

Среди других утилит Windows, предназначенных для прослушивания сети, можно отметить WS_Ping ProPack (www.ipswitch.com) и Netscan Tools (www.nwpsw.com). Хотя возможностей этих утилит вполне достаточно для прослушивания небольших сетей, они значительно медленнее Finger и Ping Sweep. Кроме того, не забывайте, что утилиты с графическим интерфейсом, несмотря на удобство их использования, лишают вас возможности их применения в сценариях и автоматизированных процедурах.

Возможно, вы хотите спросить, как поступать, если исследуемый узел блокирует сообщения ICMP? Хороший вопрос. Такой подход зачастую применяется на тех узлах, администраторы которых заботятся о безопасности. Однако, несмотря на блокировку пакетов ICMP, существуют дополнительные средства и методы, позволяющие определить, подключен ли такой узел к сети или нет. Вместе с тем необходимо отметить, что все эти средства оказываются не такими точными и эффективными, как обычные утилиты семейства ping.

В тех случаях, когда обмен данными по протоколу ICMP заблокирован, в первую очередь применяется метод сканирования портов (port scanning), который более подробно рассматривается ниже в этой главе. Просканировав стандартные порты каждого потенциального IP-адреса сети, можно определить, какие узлы подключены к сети. Если порт открыт (opened mode) или находится в режиме ожидания (listening mode), значит, по данному адресу находится подключенный к Internet узел сети. Недостатками этого метода являются большие временные затраты и некоторая неопределенность результата (если по какому-то адресу не удалось обнаружить ни одного порта, то это еще не означает, что соответствующий узел не подключен к Internet). Одной из утилит, которые можно использовать для сканирования портов, является nmap. Как уже упоминалось, с помощью этой утилиты можно проводить ICMP-прослушивание, однако этим перечень ее возможностей далеко не исчерпывается. В частности, эта утилита позволяет выполнять так называемое TCP-прослушивание сканированием (TCP ping scan). Данный режим включается с помощью параметра -рт и указания номера порта, например 80. Выбор порта с номером 80 обусловлен тем, что в подавляющем большинстве случаев именно он используется узлами сети для обмена данными через пограничные маршрутизаторы или брандмауэры с компьютерами, расположенными в так называемой демилитаризованной зоне (DMZ — demilitarized zone). При использовании указанного параметра утилита рассылает узлам исследуемой сети пакеты АСК, а затем ожидает поступления пакетов RST, что свидетельствует о том, что узел подключен к Internet.

[tsunami] nmap -sP -PT80 192.168.1.0/24

TCP probe port is 80

Starting nmap V. 2.53

Host (192.168.1.0) appears to be up.

Host (192.168.1.1) appears to be up.

Host shadow (192.168.1.10) appears to be up.

Host (192.168.1.11) appears to be up.

Host (192.168.1.15) appears to be up.

Host (192.168.1.20) appears to be up.

Host (192.168.1.50) appears to be up.

Host (192.168.1.101) appears to be up.

Host (192.168.1.102) appears to be up.

Host (192.168.1.255) appears to be up.

Nmap run completed (10 hosts up) scanned in 5 seconds

Как видно из приведенного выше листинга, этот метод определения подключенных к Internet узлов очень эффективен, даже если на них блокируется передача пакетов ICMP. С помощью утилиты nmap имеет смысл провести несколько подобных проверок, тестируя такие стандартные порты как SMTP (25), POP (110), AUTH (110), IMАР (143) или другие порты, которые, по вашим сведениям, могут быть уникальными на каком-либо компьютере исследуемой сети.

Еще одной утилитой, специально предназначенной для TCP-прослушивания, является утилита hping (http://www.kyuzz.org/antirez/). По возможностям она даже превосходит утилиту nmap. Утилита hping позволяет пользователям управлять параметрами протокола TCP, что может обеспечить проникновение отправляемых пакетов даже через некоторые устройства управления доступом. Так, установив порт назначения с помощью параметра -р, можно обойти некоторые устройства управления доступом точно так же, как это было сделано с применением утилиты traceroute в главе 1. Поэтому утилита hping может с успехом служить не только для TCP-прослушивания, но и преодолевать преграды некоторых устройств управления доступом благодаря возможности фрагментации пакетов.

[tsunami] hping 192.168.1.2 -S -p 80 -f

HPING 192.168.1.2 (ethO 192.168.1.2):

S set, 40 data bytes

60 bytes from 192.168.1.2:

flags=SA seq=0 ttl=124 id=17501 win=0 time=46.5

60 bytes from 192.168.1.2:

flags=SA seq=l ttl=124 id=18013 win=0 time=169.1

В некоторых случаях простые устройства управления доступом не могут корректно обрабатывать фрагментированные пакеты, что позволяет им проходить через такие устройства и достигать интересующего взломщика адреса. Обратите внимание, что в случае, когда порт открыт, возвращаются флаги TCP SYN (s) и дек (А). Утилиту hping очень легко использовать в сценариях оболочки с параметром счетчика пакетов -cN, где N — это количество пакетов, которые нужно отправить в Internet, прежде чем переходить к выполнению следующей команды сценария. Хотя данный метод и не обладает такой скоростью, как описанные выше методы ICMP-прослушивания, в некоторых случаях только он может помочь выяснить конфигурацию сети. Более подробно утилита hping рассматривается в главе 11, "Брандмауэры".

Последним из средств прослушивания рассмотрим утилиту icmpenum хакером Симплом Номадом (Simple Nomad) (http://www.nmrc.org/files/sunix/icmpenum-1.1.tgz). Эту утилиту удобно использовать для определения архитектуры сети. Утилита icmpenum позволяет быстро выявить подключенные к сети компьютеры, передавая стандартные ICMP-пакеты ECHO, а также ICMP-запросы TIME STAMP REQUEST и INFO. Если входные пакеты ECHO не пропускаются пограничным маршрутизатором или брандмауэром, то подключенные узлы можно по-прежнему идентифицировать с помощью альтернативных пакетов ICMP.

[shadow] icmpenum -i2 -с 192.168.1.0

192.168.1.1 is up

192.168.1.10 is up

192.168.1.11 is up

192.168.1.15 is up

192,168.1.20 is up

192.168.1.103 is up

В приведенном примере сеть класса С (192.168.1.0) была протестирована с использованием ICMP-запроса TIME STAMP REQUEST. Однако реальная мощь утилиты icmpenum заключается в возможности идентификации узлов с помощью ложных пакетов, что позволяет избежать обнаружения злоумышленника. Это возможно благодаря тому, что утилита icmpenum позволяет генерировать ложные пакеты с использованием параметра -s и пассивно ожидать отклика при указании параметра -р.

Подводя итог, можно отметить, что IСМР- или TCP-прослушивание позволяет точно установить, какие компьютеры сети подключены к Internet. Так, в рассматриваемом примере мы установили, что из 255 потенциальных адресов сети класса С к Internet подключены лишь несколько компьютеров. Выявленные узлы становятся предметом первоочередного внимания в дальнейших исследованиях. Таким образом, мы значительно сузили область поиска, что позволяет сэкономить время и силы для более эффективных действий.

Дата: 2019-05-28, просмотров: 198.