Понятие неопределенного интеграла. Свойства неопределенного интеграла.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В дифференциальном исчислении решается задача: по д анной функции ƒ(х) найти ее производную (или дифференциал). Интегральное исчисление решает обратную задачу: найти функцию F(x), зная ее производную F'(x)=ƒ(х) (или дифференциал). Искомую функцию F(x) называют первообразной функции ƒ(х) .

Функция F(x) называется первообразной функции ƒ(х) на интервале (а; b), если для любого х є (а;b) выполняется равенство

F'(x)=ƒ(x) (или dF(x)=ƒ(x)dx).

Например, первообразной функции у=х2, х є R, является функция , так как

Очевидно, что первообразными Будут также любые функции

где С - постоянная, поскольку

Tеоpeмa 29. 1. Если функция F(x) является первообразной функции ƒ(х) на (а;b), то множество всех первообразных для ƒ(х) задается формулой F(x)+С, где С - постоянное число.

▲Функция F(x)+С является первообразной ƒ(х).

Действительно, (F(x)+C)'=F'(x)=ƒ(x).

Пусть Ф(х) - некоторая другая, отличная от F(x), первообразная функции ƒ(х) , т. е. Ф'(x)=ƒ(х). Тогда для любого х є (а;b) имеем

А это означает, что

Ф(x)-F(x)=C,

где С - постоянное число. Следовательно, Ф(х)=F(x)+С.

 

Множество всех пepвoобpaзныx функций F(x)+С для ƒ(х) называется неопределенным интегралом от функции ƒ(х) и обозначается символом ∫ ƒ(х) dx.

Таким образом, по определению

∫ƒ(x)dx= F(x)+C.

Здесь ƒ(х) называется подынтегральнoй функцией, ƒ(x)dx — подынтегральным выражением, х - переменной интегрирования, ∫ - знаком неопределенного интеграла.

Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Геометрически неопределенный интеграл представляет собой семейство «параллельных» кривых у=F(x)+C (каждому числовому значению С соответствует определенная кривая семейства) (см. рис. 166). График каждой первообразной (кривой) называется интегральной кривой.

Для всякой ли функции существует неопределенный интеграл?

Имеет место теорема, утверждающая, что «всякая непрерывная на (а;b) функция имеет на этом промежутке первообразную», а следoвaтельно, и неопределенный интеграл.

· Свойства неопределенного интеграла

Отметим ряд свойств неопределенного интеграла, вытекающих из его определения.

1. Дифференциал от неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции:

d(ƒ(x)dx)=ƒ(x)dх, (ƒ(x)dx)'=ƒ(х).

Дeйcтвительнo, d(∫ƒ(х) dx)=d(F(x)+С)=dF(x)+d(C)=F'(x) dx =ƒ(х) dx

(ƒ (x) dx)'=(F(x)+C)'=F'(x)+0 =ƒ (x).

Блaгoдapя этому свойству правильность интегрирования проверяется дифференцированием. Например, равенство

∫(3x2+ 4) dx=хз+4х+С

верно, так как (х3+4х+С)'=3x2+4.

2. Hеопpедeлeнный интеграл от диффepeнциaла некоторой функции равен сумме этой функции и произвольной постоянной:

∫dF(x)= F(x)+C.

Действительно,

3. Постоянный множитель можно выносить за знак интеграла:

α ≠ 0 - постоянная.

Действительно,

(положили С1/а=С. )

4. Неопределенный интеграл от aлгeбpaическoй суммы конечного числа непрерывных функций равен aлгебpaичecкoй сумме интегралов от слагаемых функций:

Пусть F'(x)=ƒ(х) и G'(x)=g(x). Тогда

где С1±С2=С.

5. (Инвариантность формулы интегрирования).

Если , где u=φ(х) - произвольная функция, имеющая непрерывную производную.

Пусть х - независимая переменная, ƒ(х) - непрерывная функция и F(x) - ее пepвoобpaзнaя. Тогда

Положим теперь u=ф(х), где ф(х) - непрерывно-дифференцируемая функция. Рассмотрим сложную функцию F(u)=F(φ(x)). В силу инвараинтности формы первого дифференциала функции (см. с. 160) имеем

Отсюда

Таким образом, формула для неопределенного интеграла остается справедливой независимо от того, является ли переменная интегрирования независимой переменной или любой функцией от нее, имеющей непрерывную производную.

Так, из формулы путем замены х на u (u=φ(х)) получаем

В частности,


Дата: 2019-12-22, просмотров: 232.