Построение противоположных высказываний к высказываниям с составным логическим смыслом
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Объектами изучения логики являются ФОРМЫ МЫШЛЕНИЯ: понятие, суждение и умозаключение.

 ПОНЯТИЕ - это мысль, в которой обобщаются отличительные свойства предметов. Т.к. язык является формой выражения мысли, то в языке термину "понятие" соответствует "слово". Но человек не мыслит отдельными понятиями. Выражая свои мысли, он составляет слова в предложения. Предложение в языке есть суждение в мыслях.

 СУЖДЕНИЕ (высказывание) - есть мысль (выраженная в форме повествовательного предложения), в которой нечто утверждается о предмете действительности, которая объективно является либо истинной, либо ложной. Правда, истинность суждения относительна (приведите примеры). Говорят, что суждение может иметь одно из двух значений истинности: "истина" или "ложь". СУЖДЕНИЕ ИСТИННО (имеет значение истинности - истина), ЕСЛИ ОНО СООТВЕТСТВУЕТ ДЕЙСТВИТЕЛЬНОСТИ. Критерий истинности - практика (утверждал В.И.Ленин). К числу суждений не относятся мысли, не имеющие значения истинности. Таким мыслям в языке соответствуют вопросительные и побудительные предложения. Является ли суждением фраза: "Иванов сдаст экзамен на отлично"? Да, ведь это не вопросительное и не побудительное предложение. Но значение истинности его не определено, пока не пройдет экзамен.

Суждение, значение истинности которого не однозначно, называется ГИПОТЕЗОЙ. Отношение к гипотезе среди ученых тоже было неоднозначным. Например Исаак Ньютон утверждал: "Hypotheses non fingo" - "Гипотез не измышляю". М.В.Ломоносов же, напротив, писал, что гипотезы "дозволены в философских предметах и даже представляют собой единственный путь, которым величайшие люди дошли до открытия самых важных истин. Это - нечто вроде порыва, который делает их способными достигнуть знаний, до каких никогда не доходят умы низменных и пресмыкающихся во прахе..." Правда, была и оговорка: "Я не признаю никакого измышления и никакой гипотезы, какой бы вероятной она ни казалась, без точных доказательств".

Суждения (высказывания), как и предложения в нашем языке, бывают простыми и сложными. Простые суждения неразложимы. Сложные суждения образуются из простых при помощи ЛОГИЧЕСКИХ ФУНКЦИЙ (операций). Рассмотрим некоторые из этих функций.

 В обыденной речи мы часто пользуемся словом "НЕ", или словами "НЕВЕРНО, ЧТО", когда хотим что-то отрицать. Пусть, например, кто-то сказал: "Тоска зеленая." (Обозначим это высказывание А). Если Вы не согласны, Вы скажете:" Тоска НЕ зеленая." Или:" Неверно, что тоска зеленая." (Ваше высказывание обозначим В). Нетрудно заметить, что значения истинности высказываний А и В находятся в определенной связи: если А истинно, то В ложно, и наоборот. Функция, с помощью которой из высказывания А получается высказывание В, называется ОТРИЦАНИЕМ и само высказывание В называется ОТРИЦАНИЕМ ВЫСКАЗЫВАНИЯ А и обозначается А. Мы получили определение:

Отрицанием ⌐ А некоторого высказывания А называется такое высказывание, которое истинно, когда А ложно, и ложно, когда А истинно.

Отрицание высказывания А обозначим А. Определение отрицания может быть записано с помощью так называемой таблицы истинности:

 

А А
И Л
Л И

 

В ней указано, какие значения истинности (Истина, Ложь) принимает отрицание А в зависимости от значений истинности исходного высказывания А.

Если два высказывания соединены союзом И, то полученное сложное высказывание обычно считается истинным тогда и только тогда, когда истинны оба составляющие его высказывания. Если хотя бы одно из составляющих высказываний ложно, то и полученное из них с помощью союза «И» сложное высказывание также считается ложным. Например, возьмем два высказывания:

"У кота есть хвост" (А) "У зайца есть хвост" (В)

Сложное высказывание "У кота есть хвост и у зайца есть хвост" истинно, т.к. истинны оба высказывания А и В. Но если взять другие высказывания:

"У кота длинный хвост" (С) "У зайца длинный хвост" (D)

то сложное высказывание "У кота длинный хвост и у зайца длинный хвост" будет ложным, т.к. ложно высказывание (D). Таким образом, исходя из обычного смысла союза И, приходим к определению соответствующей логической функции - КОНЪЮНКЦИИ:

 Конъюнкцией двух высказываний А и В называется такое высказывание, которое истинно тогда и только тогда, когда истинны оба высказывания А и В.

Конъюнкцию высказываний А и В мы обозначим: A & B. Знак & - амперсент — читается как английское "and". Часто встречается обозначение А /\ В. Иногда, для краткости, пишут просто АВ.

Определение конъюнкции может быть записано в виде таблицы истинности, в которой для каждого из четырех возможных наборов значений исходных высказываний А и В задается соответствующее значение конъюнкции А & В:

 

А В А&B
и и и
и л л
л и л
л л л

 

Определение конъюнкции двух высказываний естественным образом распространяется на любое конечное число составляющих: конъюнкция А1 & A2 & A3 &...& AN истинна тогда и только тогда, когда истинны все высказывания А1, A2, A3, ...AN (а, следовательно, ложна, когда ложно хотя бы одно из этих высказываний).

Если два высказывания соединены союзом ИЛИ, то полученное сложное высказывание обычно считается истинным, когда истинно ХОТЯ БЫ ОДНО из составляющих высказываний. Например, возьмем два высказывания:

"Мел черный." (А) "Доска черная." (В)

Высказывание "Мел черный или доска черная" будет истинным, т.к. одно из исходных высказываний (В) истинно. Получаем определение функции ДИЗЪЮНКЦИИ:

Дизъюнкцией двух высказываний называется такое новое высказывание, которое истинно тогда и только тогда, когда истинно ХОТЯ БЫ ОДНО из этих высказываний.

Дизъюнкцию высказываний А и В мы обозначим символом А V В и будем читать: А или В. Определение дизъюнкции может быть записано в виде таблицы истинности:

 

А В АVB
И И Л Л И Л И Л И И И Л

 

Определение дизъюнкции двух высказываний естественным образом распространяется на любое конечное число составляющих: дизъюнкция А1 V А2 V А3 V...V АN истинна тогда и только тогда, когда истинно хотя бы одно из высказываний А1, А2, А3, ..., АN (а следовательно, ложна, когда ложны все эти высказывания).

Как Вы думаете, в каком случае два простых высказывания можно считать эквивалентными (равносильными). Чисто интуитивно можно догадаться, что высказывания эквивалентны, когда их значения истинности одинаковы. Например, эквивалентны высказывания: "железо тяжелое" и "пух легкий", так же как и высказывания: "железо легкое" и "пух тяжелый". Обозначим эквиваленцию символом <=> и запись "А <=> В" будем читать "А эквивалентно В", или "А равносильно В", или "А, если и только если В". Запишем определение:

Эквиваленцией двух высказываний А и В называется такое высказывание, которое истинно тогда и только тогда, когда оба эти высказывания А и В истинны или оба ложны.

Отметим, что высказывание типа "А, если и только если В" можно заменить высказыванием "Если А, то В и, если В, то А" (обдумайте это на досуге и обратите внимание на символ <=>). Следовательно, функцию эквиваленции можно заменить комбинацией функций импликации и конъюнкции. Запишем таблицу истинности для эквиваленции:

 

А В А<=>В
И И Л Л И Л И Л И Л Л И

 

Попробуем записывать сложные высказывания схематически с помощью обозначения логических связок:

1. "Быть иль не быть - вот в чем вопрос." (Шекспир) А V ⌐A <=> В

2. "Если хочешь быть красивым, поступи в гусары." (К. Прутков) А => В

Истинность или ложность сложных суждений представляет собой функцию истинности или ложности простых. Эту функцию называют БУЛЕВОЙ ФУНКЦИЕЙ СУЖДЕНИЙ (F(A,B)). Рассмотрим примеры построения таблиц истинности для сложных суждений.

1. А <=> А (закон "отрицания отрицания": Отрицание отрицания суждения тождественно самому суждению.)

 

А А А A<=>A
И Л И И
Л И Л И

 

Если значение истинности булевой функции всегда истина, то эта функция выражает ЗАКОН.

2. ((А => В) & ⌐ В) => ⌐A (доказательство "от противного": Если А влечет В, но В не верно, то не верно и А.)

 

A B A=>B B (A=>B)&B A ((A=>B)&B)=>A
И И Л Л И Л И Л И Л И И Л И Л И Л Л Л И Л Л И И И И И И

Вы знаете, что ТЕОРЕМА - это предложение, истинность которого доказывается на основе аксиом или ранее доказанных теорем. Теоремы часто формулируются в виде импликаций. Импликативная структура наиболее удобна для выделения условия и заключения теоремы (того, что дано, и того, что необходимо доказать). Если импликация А => В выражает некоторую теорему, то основание импликации А выражает условие, а следствие В - заключение теоремы. Условие или заключение в свою очередь может не быть элементарным высказыванием, а иметь определенную логическую структуру, чаще всего конъюнктивную или дизъюнктивную. Рассмотрим примеры:

1. Теорема "Если диагонали параллелограмма взаимно перпендикулярны или делят его углы пополам, то этот параллелограмм - ромб" имеет структуру А V В => C, где А - "диагонали параллелограмма взаимно перпендикулярны"; В - "(диагонали параллелограмма) делят его углы пополам"; С - "этот параллелограмм - ромб".

2. Теорема о средней линии трапеции имеет структуру: А => В & С, где А - "четырехугольник - трапеция"; В - "его средняя линия параллельна основаниям"; С - "(его средняя линия) равна полусумме оснований".

 Часто в формулировках теорем используется выражение "необходимо и достаточно" (ПРИЗНАК). В логике это выражение соответствует эквиваленции, которая, как известно, представима в виде конъюнкции двух импликаций. Одна из этих импликаций выражает теорему, доказывающую НЕОБХОДИМОСТЬ признака, другая выражает теорему, доказывающую ДОСТАТОЧНОСТЬ признака. Например, признак перпендикулярности двух плоскостей:

"Для того чтобы две плоскости были перпендикулярны, НЕОБХОДИМО и ДОСТАТОЧНО, чтобы одна из них проходила через прямую, перпендикулярную к другой", может быть сформулирован и так: "Две плоскости перпендикулярны, ЕСЛИ И ТОЛЬКО ЕСЛИ одна из них проходит через прямую, перпендикулярную к другой":


А <=> В или А => B & B =>A.

 

Для преобразования суждений важны следующие законы:

 

1) А <=> A закон двойного отрицания;

2) (A&B) <=> A V B законы де Моргана;

3)  (AVB) <=> A & B

4)  A => B <=> A V B замена импликации.

 

Для построения высказываний о всеобщности и о существовании вводятся операции связывания кванторами (или "навешивания кванторов").

Выражение "для всех Х" ("для любого Х") называется КВАНТОРОМ ВСЕОБЩНОСТИ и обозначается символом: Х.

Выражение "существует Х такое, что..." называется КВАНТОРОМ СУЩЕСТВОВАНИЯ и обозначается символом: Х.

Выражение "существует точно одно Х такое, что..." называется КВАНТОРОМ СУЩЕСТВОВАНИЯ И ЕДИНСТВЕННОСТИ и обозначается символом: ! Х.

Пример: Высказывание (суждение) "Ты любишь потому, что ты любишь. Не существует причин, чтобы любить." (Экзюпери) можно записать в виде:

 

А => А. В.

 

где A - "ты любишь", В - "причины любви".

Исчисление предикатов расширяет язык исчисления высказываний так, что мир оказывается, состоящим из объектов, отношений и свойств.

Логику предикатов можно рассматривать как компоненту естественного языка, имеющую в соответствии со сложностью синтаксических правил иерархическую структуру, которую образуют предикаты первого порядка, второго и так далее. Для логики предикатов определено множество значений и на его основе определены слова как последовательности знаков. Функцией языка предикатов является задание слов двух типов:

1. Слова, задающие сущности изучаемого мира.

2. Слова, задающие атрибуты / свойства этих сущностей, а также их поведение и отношения.

Первый тип слов называется термами, второй – предикатами.

Некие сущности и переменные определяются упорядоченными последовательностями конечной длины из букв и символов, исключая зарезервированные. Константы и переменные определяют отдельные объекты рассматриваемого мира. Последовательность из n констант или переменных (1 £ n < ¥), заключенная в круглые скобки, следующие за символом функции, имя которой задано некоторой конечной последовательностью букв, называется функцией.

Например, функция f(x, y) принимает некоторые значения, которые определяются значениями констант и переменных (аргументов функции), содержащимися под знаком функции. Эти значения, так же как и аргументы, являются некоторыми сущностями рассматриваемого мира. Поэтому все они объединяются общим названием терм (константы, переменные, функции).

Атомарным предикатом (атомом) называется последовательность из n (1 £ n <¥) термов, заключенных в круглые скобки, следующие за предикатным символом, имя которого выражается конечной последовательностью букв. Предикат принимает одно из двух значений true или false в соответствии со значениями, входящих в него термов.

Предикат @ Нераспространенное простое предложение

Из атомов с помощью, выполняющих функции союзов, символов составляются логические формулы, соответствующие сложным предложениям. В логике предикатов используются два класса символов. Первый класс соответствует союзам и включает операции дизъюнкции, конъюнкции, отрицания, импликации и эквивалентности.

Символы первого класса позволяют определять новый составной предикат, используя уже определенные предикаты. Различие между символами первого класса лежит в правилах, в соответствии с которыми определяются значения истинности или ложности составного предиката в зависимости от истинности или ложности элементарных предикатов. Символы ® и », вообще говоря избыточны так, как:

 

 

но используются т.к. ® эквивалентен фразе «Если А, то В», а » - «А и В эквивалентны».

В качестве символов второго класса используются " и $. Эти символы называются кванторами общности и существования, соответственно. Переменная, которая квантифицирована, т.е. к ней применен один из кванторов , называется связанной. Квантор общности является обобщением, аналогом конъюнкции, а квантор существования – обобщением, аналогом дизъюнкции на произвольное, не обязательно конечное множество.

Действительно, пусть  Тогда для любого предиката U выполняется:

 

 

Аналогом законов Де Моргана для кванторов являются:

 

Таким образом, чтобы найти отрицание выражения, начинающегося с кванторов, надо каждый квантор заменить на его двойственный и перенести знак отрицания за кванторы. Отсюда:

 

 

Функция, двойственная к данной, есть функция, в которой взяты отрицания от всех операций и от всех операндов, и обозначается .

Пример:

 

.

 

Общезначимое равенство между функциями влечёт общезначимое равенство между двойственными функциями. Из этого следует, что принцип двойственности вдвое сокращает время доказательства теорем: вместе с каждой теоремой мы автоматически доказываем двойственную ей.


Дата: 2019-12-22, просмотров: 228.